预测

全球首个化学反应AI「考场」,7种MLIPs模型与SOTA生成式模型同场PK

编辑 | ScienceAI过渡态(Transition State, TS)是化学反应的「关键帧」,就像群山中的最低隘口,决定了分子翻山越岭所需的能量和路径。 然而,TS 的寿命仅有飞秒级(10⁻¹⁵ 秒),实验观测如同捕捉闪电一瞬——目前只能依赖量子化学计算来寻找。 传统的密度泛函理论(DFT)虽能提供高精度结果,但单次 TS 搜索可能消耗数十至数千 CPU 时,面对成百上千反应节点的复杂网络,计算成本高得难以承受。

加速精准医疗,开源GNN实现分子精准建模,质谱识别准确率提升至49%

编辑丨&非靶向代谢组学在推进精准医学和生物标志物发现方面前景广阔。 由于谱图参比库的不完整,从串联质谱中鉴定化合物在当前仍是一项颇有挑战的任务。 为了应对这项挑战,德国联邦材料研究与测试研究所(BAM)与柏林自由大学的一支团队提出了 FIORA,这是一种旨在模拟串联质谱的开源图神经网络。

AI学术算命?Gemini 2.0预测谷歌AI大佬职业生涯,准到离谱!

如果让人工智能来点评博士论文,还顺手预测一下作者将来的职业发展。 会是什么样子? 最近,谷歌首席科学家、Gemini负责人Jeff Dean就玩了这么一出,他把自己的博士论文交给了最新的Gemini 2.0。

小模型指导大模型!田渊栋等爆锤蒸馏:新方法更高效、更透明、更可控

「下一个token预测」(next token prediction,NTP)是大语言模型(LLMs)不断取得突破的核心技术。 但这种依赖tokenization的方法,导致LLM「严重偏科」。 比如,Karpathy发现一个表情包相当于53个token!关注AI的可能也知道GPT-4o不会数字母,不知道Strawberray中有几个字母「r」。

北航&滴滴!自动驾驶汽车的运动预测:综述

论文链接::综述。 近年来,自动驾驶领域吸引了越来越多的关注。 准确预测各种交通参与者的未来行为对于自动驾驶汽车(AVs)的决策是至关重要的。

使用 SHAP 使机器学习模型变的可解释!!!

大家好,我是小寒SHAP 是一种用于解释机器学习模型预测结果的方法,它基于博弈论中的 Shapley值。 旨在为每个特征分配一个“贡献值”,表明该特征对模型预测结果的影响有多大。 SHAP 为复杂的黑箱模型(如深度学习模型、集成方法等)提供了一种统一且理论上有保障的解释框架,帮助我们理解模型的决策过程,提高模型的透明度和可信度。

AI盈利难、机器人泡沫多!马库斯25年AI预测,隔空喊话马斯克

去年,马库斯对于AI趋势的预测几乎全部正确,但完全没想到OpenAI可以估值到1500亿美元。 在本月2日,马库斯发表了对2025年的25个AI预测,涵盖AGI、GenAI、自动驾驶、人形机器人、智能体等多个方向。 马斯克(Elon Musk),曾预测2025年底的AI能力:「我们就会拥有比任何人都聪明的AI」。

引领图像编辑领域的新潮流!Edicho:实现跨图像一致编辑的新方法(港科&蚂蚁&斯坦福)

本文经AIGC Studio公众号授权转载,转载请联系出处。 在图像处理领域,如何实现跨图像的一致编辑一直是技术挑战。 传统方法往往局限于单张图像的编辑,难以保证多张图像间编辑效果的一致性。

麻省理工Nature子刊:AI加速量子化学计算,精度媲美「金标准」,计算效率提升百万倍!

编辑 | 2049在量子化学计算中,精确预测分子电子结构一直是一个重要而富有挑战性的课题。 传统的密度泛函理论(DFT)方法虽然计算速度快,但精度有限;而高精度的耦合簇(CCSD(T))方法虽然被视为「金标准」,但其计算成本随分子大小呈指数级增长,难以应用于复杂体系。 最近,麻省理工学院的研究团队开发出一种创新的多任务学习方法,成功将机器学习与量子化学计算相结合,实现了接近CCSD(T)精度的分子电子结构预测。

世界模型会是L3自动驾驶的唯一解吗?2025 技术展望~

三维空间占有率(3D Occupancy)预测的目的是预测三维空间中的每个体素是否被占有,如果被占有,则对应的体素将被标记。 3D Semantic Occupancy是在三维空间内同时编码占用状态和语义信息,成为描述自动驾驶 3D 场景的一种极具吸引力的表示方式。 而自动驾驶世界模型(World Model)具备对真实物理世界的理解能力,基于一些历史信息/状态,能够预测未来时刻的场景变化甚至agents的状态变化。

准确预测蛋白质功能新SOTA,中南大学推出全新深度学习模型,登Nature子刊

编辑丨&预测蛋白质功能的计算方法对于理解生物学机制和治疗复杂疾病具有重要意义。 然而,现有的预测计算方法缺乏可解释性,难以理解蛋白质结构和功能之间的关系。 在研究中,来自中南大学的团队提出了一种基于深度学习的解决方案,名为 DPFunc,用于使用域引导的结构信息进行准确的蛋白质功能预测。

2025智能世界50震撼预测!AI海啸来袭,5维度看清AGI与潜在可能

一直坚持的新年预测大多得到印证,尤其去年命中率90%以上。 2025继续。 《2024年的16个可能》,讲到我们同时处在四个周期的起点。

Hinton发2024末日预警:10年内人类灭绝!奥特曼预言18个月ASI降临

2024年,注定是AI历史上浓墨重彩的一年。 站在2024年的尾声,各位大佬也给出了自己对于未来的预测。 OpenAI CEO奥特曼看来,我们即将迎接超级智能的到来,而且很快了!

高精度预测蛋白构象变化,中国科大、上科大通用深度学习模型

编辑 | KX预测蛋白质构象变化是计算生物学和人工智能领域的一大挑战。 主流的 AlphaFold 等算法可以高通量预测蛋白质的静态结构,但对蛋白质构象变化预测却束手无策。 为了解决这个问题,中国科学技术大学和上海科技大学的研究人员,提出了一种新颖的深度学习策略,即利用高通量生物物理采样来规避与蛋白质构象转变相关的数据匮乏。

改进蛋白突变稳定性预测,清华龚海鹏团队AI蛋白工程模型登Nature子刊

编辑 | KX准确预测蛋白质突变效应在蛋白质工程和设计中至关重要。 近日,清华大学龚海鹏团队提出了一套基于几何学习的模型套件——GeoStab-suite,其中包含 GeoFitness、GeoDDG 和 GeoDTm 三个模型,分别用于预测蛋白质突变后的适应度得分、ΔΔG 和 ΔTm。 GeoFitness 采用专门的损失函数,允许使用深度突变扫描数据库中的大量多标记适应度数据对统一模型进行监督训练。

达摩院发布八观气象大模型:精度达1小时1公里,率先落地新能源场景

11月6日,阿里巴巴达摩院(湖畔实验室)在北京举行决策智能产品发布会,正式发布八观气象大模型,在全球气象模型基础上引入区域多源数据,时空精度最高可达1公里*1公里*1小时。 通过大幅提升对温度、辐照、风速等关键气象指标的预测性能,八观气象大模型率先落地新能源占比高的新型电力系统,助力国网山东电力调控中心成功预测了多次极端天气,新能源发电功率、电力负荷预测准确率分别提升至96%和98%以上。 传统上,气象学家们根据物理规律,将大气运动变化编写成一系列数学物理方程再进行数值计算,耗费大量算力资源,且受到物理模型的瓶颈制约,难以快速、高效地满足各行业不同准确率、分辨率的天气预需求。

全球首次:时序大模型突破十亿参数,华人团队 Time-MoE 预训练数据达 3000 亿个时间点

Time-MoE 采用了创新的混合专家架构,能以较低的计算成本实现高精度预测。 研发团队还发布了 Time-300B 数据集,为时序分析提供了丰富的训练资源,为各行各业的时间序列预测任务带来了新的解决方案。 在当今以数据为驱动的时代,时序预测已成为众多领域不可或缺的核心组成。

从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法

编辑 | KX蛋白质在生物体内扮演着不可或缺的角色,准确预测其功能对于实际应用至关重要。尽管高通量技术促进了蛋白质序列数据的激增,但揭示蛋白质的确切功能仍然需要大量时间和资源。目前,许多方法都依赖于蛋白质序列进行预测,而针对蛋白质结构的方法很少。