蛋白质

高灵敏探索质谱,滑铁卢、中原AI院团队基于深度学习的端到端方法

编辑 | 萝卜皮基于质谱的蛋白质组学中肽段鉴定对于理解蛋白质功能和动力学至关重要。 传统的数据库搜索方法虽然应用广泛,但依赖于启发式评分函数,必须引入统计估计才能获得更高的鉴定率。 加拿大滑铁卢大学 (University of Waterloo)和中原人工智能研究院(中原 AI 院)的研究团队提出了 DeepSearch,一种基于深度学习的串联质谱端到端数据库搜索方法。

活性提高42倍,ML引导的无细胞表达加速酶工程,登Nature子刊

编辑 | 萝卜皮酶是人类生活中不可或缺的天然催化剂,不仅助我们消化食物,还能增强香水香味、提高洗衣效率,甚至用于疾病治疗。 科学家们正使用酶工程创造新酶,用于吸收温室气体、降解环境毒素、研发高效药物。 但是,酶工程受限于快速生成和使用大量序列功能关系数据集进行预测设计的挑战。

AI赋能蛋白质研究:SaprotHub让蛋白质AI模型训练和调用不再有门槛!

编辑 | ScienceAI近年来,AI 技术在蛋白质研究领域发挥了越来越重要的作用。 从 AlphaFold2 在结构预测任务上的脱颖而出,到各类蛋白质语言模型(PLMs)在功能预测方面的重大进展,生物研究者们可以利用各式各样的 AI 模型来辅助他们的研究。 然而,随着模型变得越来越复杂,如何训练和调用这些 AI 模型对于缺乏机器学习专业知识的研究者来说是一件非常具有挑战的任务,也因此限制了 AI 技术在实际研究中的应用。

模拟5亿年进化的ESM3在Science发布了,可推理蛋白质序列、结构和功能

编辑 | 萝卜皮2024 年夏天 EvolutionaryScale 推出了 ESM3,一款面向蛋白质语言的大模型,成功在自然进化未曾涉足的区域设计出功能性蛋白。 同期上线了该研究的预印版本。 时隔半年,该研究以「Simulating 500 million years of evolution with a language model」为题,于 2025 年 1 月 16 日在《Science》发布。

准确预测蛋白质功能新SOTA,中南大学推出全新深度学习模型,登Nature子刊

编辑丨&预测蛋白质功能的计算方法对于理解生物学机制和治疗复杂疾病具有重要意义。 然而,现有的预测计算方法缺乏可解释性,难以理解蛋白质结构和功能之间的关系。 在研究中,来自中南大学的团队提出了一种基于深度学习的解决方案,名为 DPFunc,用于使用域引导的结构信息进行准确的蛋白质功能预测。

Science子刊,斯坦福AI方法表示蛋白互作节点,增强功能识别与PPI推理

编辑 | 白菜叶生物网络通过详细描绘基因、蛋白质及其他细胞成分之间的复杂相互作用,为建模生物系统提供了重要工具。 这些网络将实体表示为节点,将其相互作用(从物理连接到功能关联)表示为边,从而为解析生物系统和过程的复杂性奠定了基础。 例如,在蛋白质-蛋白质相互作用(PPI)网络中,复杂的连接关系包含了理解细胞过程和疾病机制的关键信息。

空间蛋白质组学:构建复杂组织的尺度图谱

编辑丨toileter当人类前行至远方,我们以自己的脚步衡量出道路,以道路为丝线绘制出这片大地的地图。 而现在,我们将目光望进自己的体内,意图探索生物系统的交错复杂。 与此,空间蛋白质组学为我们带来了更清晰的笔迹,使得人类在对抗疾病的道路上得以踏上更便捷的道路。

麦吉尔大学Ding Lab基于深度学习开发单细胞水平转座子位点表达定量模型,登Nature子刊

编辑丨ScineceAI该论文介绍 MATES:一种基于深度学习的单细胞水平转座子定量工具。 MATES 使用基于自编码器的模型,通过分析转座子区域周围独特比对读段的分布,概率性地将多重比对转座子读段分配到特定位点。 通过深度神经网络,MATES 学习独特读段分布与多重比对读段来自特定位点的可能性之间的关系。

ScienceAl 2024「AI+蛋白&核酸&分子互作」专题年度回顾

编辑 | 萝卜皮2024年,科学界迎来了重要的突破与创新,尤其是在人工智能与结构生物学的结合领域。 正如今年诺贝尔奖颁发所体现的那样,人工智能(AI)技术的迅猛发展正在推动各学科的深度融合,揭示了生命科学研究的新机遇与前景。 在这一年里,AI 与生物学的交汇点愈发引人注目,成为推动现代生物医药、医学研究、生命科学等领域变革的重要力量。

新SOTA,浙大、中科院深度学习模型可靠、准确预测蛋白-配体,助力药物开发

编辑 | 萝卜皮准确预测蛋白质-配体相互作用对于理解细胞过程至关重要,目前仍面临着诸多挑战。 中国科学院、浙江大学的研究人员提出了 SurfDock,这是一种深度学习方法,通过将蛋白质序列、三维结构图和表面级特征整合到等变架构中来解决这一挑战。 SurfDock 在非欧几里德流形上采用生成扩散模型,优化分子平移、旋转和扭转以生成可靠的结合姿势。

量化617,462种人类微蛋白必需性,北大LLM蛋白质综合预测与分析,登Nature子刊

编辑 | 萝卜皮人类必需蛋白(HEP)对于个体的生存和发育必不可少。 然而,鉴定 HEP 的实验方法通常成本高昂、耗时费力。 此外,现有的计算方法仅在细胞系水平上预测 HEP,但 HEP 在活体人类、细胞系和动物模型中有所不同。

准确率84.09%,腾讯AI Lab发布Interformer,用于蛋白质-配体对接及亲和力预测,登Nature子刊

编辑 | 萝卜皮近年来,深度学习模型在蛋白质-配体对接和亲和力预测中的应用引起了越来越多的关注,而这两者都对基于结构的药物设计至关重要。 然而,许多此类模型忽略了复合物中配体和蛋白质原子之间相互作用的复杂建模,从而限制了它们的泛化和可解释性。 在最新的研究中,腾讯 AI Lab 的研究人员提出了 Interformer,这是一个基于 Graph-Transformer 架构的统一模型。

压缩率达10的48次方,实现蛋白序列空间极端压缩,清华EvoAI登Nature子刊

编辑 | 萝卜皮设计功能更佳的蛋白质需要深入了解序列和功能之间的关系,这是一个难以探索的广阔空间。 通过识别功能上重要的特征来有效压缩这一空间的能力极其宝贵。 清华大学的研究团队建立了一种称为 EvoScan 的方法,用于全面分割和扫描高适应度序列空间,以获得能够捕捉其基本特征(尤其是在高维度中)的锚点。

高精度预测蛋白构象变化,中国科大、上科大通用深度学习模型

编辑 | KX预测蛋白质构象变化是计算生物学和人工智能领域的一大挑战。 主流的 AlphaFold 等算法可以高通量预测蛋白质的静态结构,但对蛋白质构象变化预测却束手无策。 为了解决这个问题,中国科学技术大学和上海科技大学的研究人员,提出了一种新颖的深度学习策略,即利用高通量生物物理采样来规避与蛋白质构象转变相关的数据匮乏。

探索蛋白质动态变化,新AI方法JAMUN比标准MD模拟更快、更准确

编辑 | 白菜叶蛋白质结构的动态变化对于理解其功能和开发靶向药物治疗至关重要,尤其是对于隐蔽的结合位点。 然而,现有的生成构象集合的方法存在效率低下或缺乏通用性的问题,无法在训练系统之外发挥作用。 分子动力学 (MD) 模拟是当前探索蛋白质运动的标准,但计算成本高昂,且受短时间步长要求的限制,因此难以捕捉较长时间尺度上发生的更广泛蛋白质构象变化。

无需预训练,亲和力与天然蛋白相当,中国科大的蛋白质从头设计方法登Nature子刊

编辑 | 白菜叶在过去的 2-3 年里,去噪扩散概率模型 (DDPM) 在生成高质量文本、图像和视频方面取得了前所未有的成功。 这激发了人们对在蛋白质结构的从头设计中使用生成式 DDPM 的热情。 然而,大多数此类研究都遇到了相当大的困难,无法获得可以轻松生成可通过高分辨率结构分析验证的无缺陷蛋白质结构的 DDPM。

计算效率领先10倍,中国科大、哈佛功能蛋白质设计深度生成模型登Nature子刊

编辑 | ScienceAI蛋白质作为生命活动的物质基础,就像一块块精巧的「乐高积木」,支撑着生物体内几乎所有的化学反应和生命过程。 从肌肉的收缩到大脑的思维,从病毒的侵染到免疫系统的防护,几乎都依赖这些功能多样的分子。 然而,自然界中的天然蛋白质并不能完全满足人类日益多样化的需求,因此科学家们致力于通过设计与定制蛋白质,赋予其更多复杂的功能。

AlphaFold3级性能、开源、可商用,MIT团队推出生物分子预测模型Boltz-1

图示:来自测试集的靶标上的 Boltz-1 的示例预测。 (来源:论文)编辑 | 萝卜皮2024 年 11 月 18 日,麻省理工学院(MIT)的研究人员宣布推出 Boltz-1,这是一个开源模型,旨在准确模拟复杂的生物分子相互作用。 Boltz-1 是第一个完全商业化的开源模型,在预测生物分子复合物的 3D 结构方面达到 AlphaFold3 级精度。