蛋白质

每小时处理80,000个蛋白质,大卫·贝克、微软等发布Seq2Symm,实现蛋白质对称性精准预测

编辑 | 2049在生物系统中,蛋白质很少以单体形式发挥功能,它们通常需要组装成更高级的复合物。 这些复合物中,由多个相同蛋白质链通过非共价键相互作用形成的结构被称为同源寡聚体,它们的空间排布形成特定的对称性,这对蛋白质的稳定性、折叠和功能至关重要。 然而,从单条序列精确预测蛋白质可能形成的对称结构一直是一项挑战。

ICLR 2025 | Deep Signature 高效表征生物大分子复杂运动的新方法

编辑 | ScienceAI理解蛋白质动力学行为对于解析其功能机制和开发分子疗法至关重要。 然而,生物过程通常涉及复杂的高维动力学以及原子间相互作用,这对现有计算处理技术构成了巨大挑战。 本文介绍了来自香港城市大学李皓亮研究团队所提出的 Deep Signature,一个用于生物大分子复杂运动表征学习的深度学习框架。

登Science,MIT团队推出新蛋白质语言模型ProtGPS,预测蛋白在活细胞内的功能位置

编辑 | 萝卜皮蛋白质是维持细胞运转的主要动力,细胞中有成千上万种蛋白质,每种蛋白质都发挥着特殊的功能。 研究人员早就知道,蛋白质的结构决定了它的功能。 最近,科学家逐渐意识到,蛋白质的定位对其功能也至关重要。

LLM时代,计算蛋白质科学进展如何?香港理工大学等发布系统性综述

编辑丨coisini作为生命的基本构建单元,蛋白质在几乎所有基本生命活动中扮演着不可或缺的角色,例如新陈代谢、信号传导、免疫反应等。 如下图所示,蛋白质遵循序列 - 结构 - 功能范式。 图注:蛋白质遵循序列-结构-功能范式。

David Baker 利用 AI 设计蛋白质,一招制蛇毒,或将彻底改变蛇咬治疗

编辑丨&蛇中毒是一种严重的个人健康威胁,每年导致约 10 万人死亡和 30 万人永久残疾,尤其是在医疗资源匮乏的地区。 目前的抗蛇毒血清主要依赖于动物血浆提取的多克隆抗体,存在成本高、副作用大、对某些毒素效果有限等问题。 今年诺贝尔化学奖得主 David Baker 团队的一项研究揭示了蛇咬伤治疗可能改变游戏规则。

「定制化」结合蛋白质,几何深度学习方法加速开发精准药物,登Nature

编辑 | 萝卜皮蛋白质是生命的基础,具有多样的生物功能,如输送氧气、传递化学信号和防御病原体。 其分子表面的特异性决定了其功能,这一特性被用于药物开发,通过设计分子与特定蛋白质结合来改变其结合方式,甚至开发「分子胶」来治疗疾病。 奥地利科学院(ÖAW)的 Michael Bronstein、瑞士洛桑联邦理工学(EPFL)的 Bruno Correia 等,率先使用了一种名为「MaSIF(molecular surface interaction fingerprinting)」的几何深度学习架构,用于设计具有所需分子表面特性的新蛋白质。

高灵敏探索质谱,滑铁卢、中原AI院团队基于深度学习的端到端方法

编辑 | 萝卜皮基于质谱的蛋白质组学中肽段鉴定对于理解蛋白质功能和动力学至关重要。 传统的数据库搜索方法虽然应用广泛,但依赖于启发式评分函数,必须引入统计估计才能获得更高的鉴定率。 加拿大滑铁卢大学 (University of Waterloo)和中原人工智能研究院(中原 AI 院)的研究团队提出了 DeepSearch,一种基于深度学习的串联质谱端到端数据库搜索方法。

活性提高42倍,ML引导的无细胞表达加速酶工程,登Nature子刊

编辑 | 萝卜皮酶是人类生活中不可或缺的天然催化剂,不仅助我们消化食物,还能增强香水香味、提高洗衣效率,甚至用于疾病治疗。 科学家们正使用酶工程创造新酶,用于吸收温室气体、降解环境毒素、研发高效药物。 但是,酶工程受限于快速生成和使用大量序列功能关系数据集进行预测设计的挑战。

AI赋能蛋白质研究:SaprotHub让蛋白质AI模型训练和调用不再有门槛!

编辑 | ScienceAI近年来,AI 技术在蛋白质研究领域发挥了越来越重要的作用。 从 AlphaFold2 在结构预测任务上的脱颖而出,到各类蛋白质语言模型(PLMs)在功能预测方面的重大进展,生物研究者们可以利用各式各样的 AI 模型来辅助他们的研究。 然而,随着模型变得越来越复杂,如何训练和调用这些 AI 模型对于缺乏机器学习专业知识的研究者来说是一件非常具有挑战的任务,也因此限制了 AI 技术在实际研究中的应用。

模拟5亿年进化的ESM3在Science发布了,可推理蛋白质序列、结构和功能

编辑 | 萝卜皮2024 年夏天 EvolutionaryScale 推出了 ESM3,一款面向蛋白质语言的大模型,成功在自然进化未曾涉足的区域设计出功能性蛋白。 同期上线了该研究的预印版本。 时隔半年,该研究以「Simulating 500 million years of evolution with a language model」为题,于 2025 年 1 月 16 日在《Science》发布。

准确预测蛋白质功能新SOTA,中南大学推出全新深度学习模型,登Nature子刊

编辑丨&预测蛋白质功能的计算方法对于理解生物学机制和治疗复杂疾病具有重要意义。 然而,现有的预测计算方法缺乏可解释性,难以理解蛋白质结构和功能之间的关系。 在研究中,来自中南大学的团队提出了一种基于深度学习的解决方案,名为 DPFunc,用于使用域引导的结构信息进行准确的蛋白质功能预测。

Science子刊,斯坦福AI方法表示蛋白互作节点,增强功能识别与PPI推理

编辑 | 白菜叶生物网络通过详细描绘基因、蛋白质及其他细胞成分之间的复杂相互作用,为建模生物系统提供了重要工具。 这些网络将实体表示为节点,将其相互作用(从物理连接到功能关联)表示为边,从而为解析生物系统和过程的复杂性奠定了基础。 例如,在蛋白质-蛋白质相互作用(PPI)网络中,复杂的连接关系包含了理解细胞过程和疾病机制的关键信息。

空间蛋白质组学:构建复杂组织的尺度图谱

编辑丨toileter当人类前行至远方,我们以自己的脚步衡量出道路,以道路为丝线绘制出这片大地的地图。 而现在,我们将目光望进自己的体内,意图探索生物系统的交错复杂。 与此,空间蛋白质组学为我们带来了更清晰的笔迹,使得人类在对抗疾病的道路上得以踏上更便捷的道路。

麦吉尔大学Ding Lab基于深度学习开发单细胞水平转座子位点表达定量模型,登Nature子刊

编辑丨ScineceAI该论文介绍 MATES:一种基于深度学习的单细胞水平转座子定量工具。 MATES 使用基于自编码器的模型,通过分析转座子区域周围独特比对读段的分布,概率性地将多重比对转座子读段分配到特定位点。 通过深度神经网络,MATES 学习独特读段分布与多重比对读段来自特定位点的可能性之间的关系。

ScienceAl 2024「AI+蛋白&核酸&分子互作」专题年度回顾

编辑 | 萝卜皮2024年,科学界迎来了重要的突破与创新,尤其是在人工智能与结构生物学的结合领域。 正如今年诺贝尔奖颁发所体现的那样,人工智能(AI)技术的迅猛发展正在推动各学科的深度融合,揭示了生命科学研究的新机遇与前景。 在这一年里,AI 与生物学的交汇点愈发引人注目,成为推动现代生物医药、医学研究、生命科学等领域变革的重要力量。

新SOTA,浙大、中科院深度学习模型可靠、准确预测蛋白-配体,助力药物开发

编辑 | 萝卜皮准确预测蛋白质-配体相互作用对于理解细胞过程至关重要,目前仍面临着诸多挑战。 中国科学院、浙江大学的研究人员提出了 SurfDock,这是一种深度学习方法,通过将蛋白质序列、三维结构图和表面级特征整合到等变架构中来解决这一挑战。 SurfDock 在非欧几里德流形上采用生成扩散模型,优化分子平移、旋转和扭转以生成可靠的结合姿势。

量化617,462种人类微蛋白必需性,北大LLM蛋白质综合预测与分析,登Nature子刊

编辑 | 萝卜皮人类必需蛋白(HEP)对于个体的生存和发育必不可少。 然而,鉴定 HEP 的实验方法通常成本高昂、耗时费力。 此外,现有的计算方法仅在细胞系水平上预测 HEP,但 HEP 在活体人类、细胞系和动物模型中有所不同。

准确率84.09%,腾讯AI Lab发布Interformer,用于蛋白质-配体对接及亲和力预测,登Nature子刊

编辑 | 萝卜皮近年来,深度学习模型在蛋白质-配体对接和亲和力预测中的应用引起了越来越多的关注,而这两者都对基于结构的药物设计至关重要。 然而,许多此类模型忽略了复合物中配体和蛋白质原子之间相互作用的复杂建模,从而限制了它们的泛化和可解释性。 在最新的研究中,腾讯 AI Lab 的研究人员提出了 Interformer,这是一个基于 Graph-Transformer 架构的统一模型。