大型语言模型

Meta-CoT:通过元链式思考增强大型语言模型的推理能力

大型语言模型(LLMs)在处理复杂推理任务时面临挑战,这突显了其在模拟人类认知中的不足。 尽管 LLMs 擅长生成连贯文本和解决简单问题,但在需要逻辑推理、迭代方法和结果验证的复杂任务(如高级数学问题和抽象问题解决)中,其能力有所欠缺。 这种局限性源于 LLMs 的信息处理方式。

图数据库的剪枝在大型语言模型中的知识表示

译者 | 李睿审校 | 重楼图数据库的剪枝通过删除不必要的信息并加以改进,可以使LLM更快、更高效,同时节省电力和资源。 大型语言模型(LLM)通过从庞大的数据集中学习复杂的语言模式,极大地推进了自然语言处理(NLP)的发展。 然而,当这些模型与结构化知识图谱(用于表示实体之间关系的数据库)结合在一起时,可能面临一些挑战。

基于阿里开源Qwen2.5-7B-Instruct模型进行多代理RAG开发实战

译者 | 朱先忠审校 | 重楼引言大型语言模型已经展现出令人印象深刻的能力,并且随着每一代新模型的发布,它们仍在稳步改进。 例如,聊天机器人和自动摘要器等应用程序可以直接利用LLM的语言能力,因为这些LLM只要求生成文本输出——这也是该类模型的自然设置。 此外,大型语言模型还表现出了理解和解决复杂任务的令人印象深刻的能力,但是只要它们的解决方案保持“纸上谈兵”,即纯文本形式,那么它们就需要外部人类用户代表它们行事并报告所提议操作的结果。

英伟达亮相CES 2025:AI新前沿背后的动力源泉

CES 2025充分展现了英伟达的影响力,这种影响力不仅体现在英伟达自身的产品发布上,还体现在众多其他公司的产品和服务中。 CES 2025再次证明,其是全球突破性创新的舞台,而AI已成为几乎所有重大发布的核心。 英伟达是这场AI革命的核心,该公司一直将自己定位为AI和计算领域的领导者。

2024年人工智能的发展趋势

回顾2024年的人工智能领域,我们可以观察到一系列显著的趋势,特别是人工智能助手的广泛应用、人工智能代理的兴起,以及企业在选择人工智能解决方案时所面临的挑战与考量。 以下是对行业专家Derek Topp关于这些趋势的深入解读。 一、人工智能助手的快速发展在2024年,我们见证了无数供应商竞相发布新产品,旨在创建、部署和维护基于通用人工智能(GenAI)的代理。

线性化注意力综述:突破Softmax二次复杂度瓶颈的高效计算方案

大型语言模型在各个领域都展现出了卓越的性能,但其核心组件之一——softmax注意力机制在计算资源消耗方面存在显著局限性。 本文将深入探讨如何通过替代方案实现线性时间复杂度,从而突破这一计算瓶颈。 注意力机制基础理论本文假设读者已经熟悉ChatGPT、Claude等模型及其底层的transformer架构原理。

TurboAttention:基于多项式近似和渐进式量化的高效注意力机制优化方案,降低LLM计算成本70%

随着大型语言模型(LLMs)在AI应用领域持续发展,其计算成本也呈现显著上升趋势。 数据分析表明,GPT-4的运行成本约为700美元/小时,2023年各企业在LLM推理方面的总支出超过50亿美元。 这一挑战的核心在于注意力机制——该机制作为模型处理和关联信息的计算核心,同时也构成了主要的性能瓶颈。

腾讯云 ES:一站式 RAG 方案,开启智能搜索新时代

在大型语言模型(LLM)引领的革命浪潮中,搜索与大模型的紧密结合已成为推动知识进步的关键要素。 作为开源搜索引擎排名第一的 Elasticsearch(ES),结合沉淀多年的文本搜索能力和强大的向量检索能力实现混合搜索,使搜索变得更准、更全、更智能。 腾讯云 ES 多年来持续对开源 ES 的性能、成本、稳定性以及分布式架构进行深度增强优化,并在海量规模的云业务中接受考验。

Meta AI的COCONUT:无需语言即可思考的 AI 方法

译者 | 涂承烨审校 | 重楼当研究人员首次发现大型语言模型(LLMS)可以通过思维链提示一步一步地“思考”时,这是一个突破性的时刻! 我们终于可以窥视这些黑盒子的推理过程了。 但如果我告诉你,让人工智能模型用自然语言思考可能会阻碍它们的发展呢?

多种思维链-CoT

初步知识在本节中,我们提供了标准提示和思维链推理的初步知识。 定义以下符号:问题 Q、提示T 、概率语言模型PLM  和预测A 。 少样本标准提示少样本思维链提示思维链推理的优势作为一种新颖的推理范式,思维链推理具有多种优势:提升推理能力:思维链推理将复杂问题分解为可管理的步骤,并建立这些步骤之间的联系,从而促进推理。

本地构建Llama 3.2-Vision多模态LLM聊天应用实战

译者 | 朱先忠审校 | 重楼本文将以实战案例探讨如何在类似聊天的模式下从本地构建Llama3.2-Vision模型,并在Colab笔记本上探索其多模态技能。 简介视觉功能与大型语言模型(LLM)的集成正在通过多模态LLM(MLLM)彻底改变计算机视觉领域。 这些模型结合了文本和视觉输入,在图像理解和推理方面表现出令人印象深刻的能力。

使用 Llama 3.2-Vision 多模态 LLM 和图像“聊天”

一、引言将视觉能力与大型语言模型(LLMs)结合,正在通过多模态 LLM(MLLM)彻底改变计算机视觉领域。 这些模型结合了文本和视觉输入,展示了在图像理解和推理方面的卓越能力。 虽然这些模型以前只能通过 API 访问,但最近的开放源代码选项现在允许本地执行,使其在生产环境中更具吸引力。

五款小型多模态AI模型及其功能

译者 | 晶颜审校 | 重楼在过去几年里,我们已经见证了大型语言模型(LLM)的飞速发展,数十亿个参数的基础助力它们成为分析、总结和生成文本及图像,或者创建聊天机器人等任务的强大工具。 所有这些功能都有一些明显的限制,特别是如果用户没有足够的资金或硬件来容纳这些LLM所需的大量计算资源。 在这种情况下,小型语言模型(SLM)应运而生,为资源受限的用户提供了所需服务。

如何使用AutoGen AI技术实现多代理对话

译者 | 李睿审校 | 重楼本文将介绍一个实验,展示多个人工智能代理如何通过群聊方式进行互动,并根据具体的业务需求协同工作,共同生成解决方案的架构。 本文介绍如何使用Databricks Community Edition (CE)(一个免费的基于云的平台)运行一些基本的人工智能Python代码。 因为只处理开源库,所以这个实验可以很容易地在任何Python/PySpark环境中复现。

关于 Meta Llama 3,你知道多少?

2024年,对于人工智能领域来说可谓意义非凡。 继 OpenAI 推出备受赞誉的 GPT-4o mini后,Meta 的 Llama 3.1 模型亦在 . 7月23日 惊艳亮相,再一次掀起了新一轮人工智能热潮。

AI代理即将投入工作 企业需要了解什么?

AI代理工具有望实现大量数字流程的自动化,而这些流程目前是由办公室工作人员操作的。 但对于面临工作方式又一次转变的企业来说,区分长期潜力与短期现实可能是一项挑战。 AI代理很快就会变得无处不在,复杂业务流程实现自动化,为员工处理日常任务——至少这是各种软件厂商的说法,这些厂商正在迅速将智能机器人添加到各种工作应用中。

标记化在LLM中有怎样的重要作用?

译者 | 李睿审校 | 重楼如今,GPT-3、GPT-4或谷歌的BERT等大型语言模型(LLM)已经成为人工智能理解和处理人类语言的重要组成部分。 但在这些模型展现出令人印象深刻的能力背后,却隐藏着一个很容易被忽视的过程:标记化。 本文将解释标记化的定义,标记化如此重要的原因,以及在实际应用中是否能够规避这一步骤。

如何在组织中启用机器学习

译者 | 李睿审校 | 重楼计划在组织内部引入人工智能/机器学习的产品经理通常会提出这样一个问题:“我从哪里开始着手? ”对于缺乏该领域经验的组织来说,深入研究人工智能/机器学习可能会让人感到不知所措。 构建机器学习产品需要不同类型的技能和流程,而这些技能和流程需要逐步被吸纳并融入组织的日常运作中。