大型语言模型

五种资源类别,如何提高大语言模型的资源效率,超详细综述来了

本综述深入探讨了大型语言模型的资源高效化问题。近年来,大型语言模型(LLM)如 OpenAI 的 GPT-3 在人工智能领域取得了显著进展。这些模型,具有庞大的参数量(例如 1750 亿个参数),在复杂度和能力上实现了飞跃。随着 LLM 的发展趋势朝着不断增大的模型规模前进,这些模型在从智能聊天机器人到复杂数据分析,乃至于多领域研究中的应用越发广泛。然而,模型规模的指数级增长带来了巨大的资源需求,尤其是在计算、能源和内存等方面。这些资源的巨大需求使得训练或部署这样庞大的模型成本高昂,尤其是在资源受限的环境(如学术实

大模型幻觉问题无解?理论证明校准的LM必然会出现幻觉

理论证明!校准的语言模型必然出现幻觉。大型语言模型(LLM)虽然在诸多下游任务上展现出卓越的能力,但其实际应用还存在一些问题。其中,LLM 的「幻觉(hallucination)」问题是一个重要缺陷。幻觉是指由人工智能算法生成看似合理但却虚假或有误导性的响应。自 LLM 爆火以来,研究人员一直在努力分析和缓解幻觉问题,该问题让 LLM 很难广泛应用。现在,一项新研究得出结论:「经过校准的语言模型必然会出现幻觉。」研究论文是微软研究院高级研究员 Adam Tauman Kalai 和佐治亚理工学院教授 Santosh