AI在线 AI在线

预测

预测精度高达0.98,清华、深势科技等提出基于Transformer的MOF材料多功能预测框架

编辑 | X气体分离对于工业生产和环境保护至关重要,金属有机框架(MOF)由于其独特的性能而成为气体分离领域一种有前途的材料。传统的模拟方法,如分子动力学,复杂且计算量要求高。虽然基于特征工程的机器学习方法表现更好,但由于标记数据有限,很容易出现过度拟合。此外,这些方法通常是针对单一任务而设计的。为了应对这些挑战,由清华大学、加州大学、中山大学、苏州大学、深势科技和北京科学智能研究院(AI for Science Institute,Beijing,AISI) 组成的多机构团队,合作提出了 Uni-MOF,一种用于
3/5/2024 3:14:00 PM
ScienceAI

降低预测误差,中国科学院团队开发用于预测酶动力学参数的统一框架

编辑 | 萝卜皮酶动力学参数的预测对于设计和优化各种生物技术和工业应用的酶至关重要,但当前预测工具在各种任务上的有限性能阻碍了它们的实际应用。中国科学院的研究人员开发了 UniKP,一个基于预训练语言模型的统一框架,用于预测酶动力学参数,包括来自蛋白质序列和底物结构的酶周转数 (kcat)、米氏常数 (Km) 和催化效率 (kcat / Km)。还提出了源自 UniKP (EF-UniKP) 的两层框架,从而允许在考虑环境因素(包括 pH 值和温度)时进行稳健的 kcat 预测。并且,该团队系统地探索了四种有代表性
1/3/2024 11:54:00 AM
ScienceAI

发现、合成并表征303个新分子,MIT团队开发机器学习驱动的闭环自主分子发现平台

编辑 | X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自 MIT 的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了 3000 多个反应,其中 1000 多个产生了预测的反应产物,提出、合成并表征了 303 种未报道的染料样分子。该研究以《Autonom
1/2/2024 4:14:00 PM
ScienceAI

华科大团队开发几何三角形感知蛋白质语言模型,预测蛋白质-蛋白质接触

编辑 | 萝卜皮有关相互作用蛋白质之间的残基-残基距离的信息对于蛋白质复合物的结构建模非常重要,并且对于理解蛋白质-蛋白质相互作用的分子机制也很有价值。随着深度学习的出现,人们开发了许多方法来准确预测单体的蛋白质内残基-残基接触。然而,准确预测蛋白质复合物,尤其是异源蛋白质复合物的蛋白质间残基-残基接触仍然具有挑战性。华中科技大学的研究人员开发了一种基于蛋白质语言模型的深度学习方法,通过在深度神经网络中引入三角形更新和三角形自注意力的三角形感知机制来预测蛋白质复合物的蛋白质间残基-残基接触(称为 DeepInter
11/21/2023 2:37:00 PM
ScienceAI

台式PC上可运行,DeepMind天气AI以0.25°分辨率预测全球10天内数百个天气变量,仅1分钟

编辑 | 萝卜皮全球中期天气预报对于许多社会和经济领域的决策至关重要。传统的数值天气预报使用增加的计算资源来提高预报精度,但无法直接使用历史天气数据来改进基础模型。Google DeepMind 团队介绍了「GraphCast」,一种直接从再分析数据训练的基于机器学习的方法。它可以在一分钟内以 0.25° 的分辨率预测全球 10 天内的数百个天气变量。研究人员用 1380 个验证目标进行了测试,GraphCast 在 90% 的验证目标中显著优于当前最准确的操作确定性系统,其预测支持更好的严重事件预测,包括热带气旋
11/17/2023 11:26:00 AM
ScienceAI

Nature | 通过序列聚类和 AlphaFold2 预测多种构象

编辑 | XAlphaFold2 (AF2) 通过准确预测蛋白质的单一结构彻底改变了结构生物学。然而,蛋白质的生物学功能通常取决于多种构象亚状态,而致病的点突变往往会导致这些亚状态内的种群变化。来自布兰迪斯大学和霍华德·休斯医学研究所(Brandeis University and Howard Hughes Medical Institute)、哈佛大学和剑桥大学的研究团队,研究证明通过序列相似性对多序列比对 (MSA) 进行聚类,使 AF2 能够以高置信度对已知变形蛋白(metamorphic protein)
11/16/2023 1:27:00 PM
ScienceAI

超强性能,提前24h准确预测,谷歌团队发布新的天气预测模型MetNet-3

编辑 | ScienceAI预测降水、温度和风等天气变量对于社会生产生活至关重要。随着更多的极端天气出现,比如洪水、干旱和热浪等,准确的预报对于准备和减轻其影响尤为重要。未来的前 24 小时很关键,因为它们具有高度可预测性和可操作性,可以帮助人们及时做出明智的决策并保证安全。深度神经网络为天气条件建模提供了另一种范例。一旦数据可用,神经模型就能在不到一秒的时间内做出预测,并且具有非常高的时间和空间分辨率,以及直接从大气观测中学习的能力。使用大气观测、最高保真度和最低延迟数据训练的神经模型,与最先进的概率数值天气预报
11/2/2023 6:51:00 PM
ScienceAI

更低计算成本,基于单电子约化密度矩阵的机器学习电子结构方法

编辑 | 萝卜皮密度泛函理论(DFT)的定理建立了多体系统的局部外部势与其电子密度、波函数以及单粒子约化密度矩阵之间的双射映射。在此基础上,罗格斯大学(Rutgers University)和纽约大学(New York University)的研究人员证明基于单电子约化密度矩阵(reduced density matrices)的机器学习模型可用于生成替代电子结构方法。该团队为从小分子(如水)到更复杂的化合物(如苯和丙醇)的系统生成局部和混合 DFT、Hartree-Fock 和完整构型相互作用理论的替代品。代理模
10/29/2023 6:56:00 PM
ScienceAI

助力发现药物靶点,华科大开发深度迁移学习方法,预测跨膜蛋白

编辑 | 萝卜皮膜蛋白由大约四分之一的人类基因编码。链间残基-残基接触信息对于膜蛋白复合物的结构预测很重要,对于理解其分子机制很有价值。尽管已经提出了许多深度学习方法来预测膜蛋白中的蛋白内接触或螺旋-螺旋相互作用,但由于跨膜蛋白数量有限,准确预测其链间接触仍然具有挑战性。为了应对这一挑战,华中科技大学的研究人员利用从非跨膜蛋白大数据集中预先训练的知识,开发了一种深度迁移学习方法,用于预测跨膜蛋白复合物的链间接触,称为 DeepTMP。DeepTMP 利用几何三角形感知模块从蛋白质语言模型生成的共同进化信息中捕获正确
8/21/2023 5:31:00 PM
ScienceAI

使用超图学习梳理出基因组规模代谢网络中缺失的反应

编辑 | 白菜叶基因组规模代谢模型 (GEM) 是预测生物体细胞代谢和生理状态的强大工具。然而,由于学界对代谢过程的了解不完善,即使是精心设计的 GEM 也存在知识缺口。现有的间隙填充方法通常需要表型数据作为输入,来梳理缺失的反应。在实验数据可用之前,科学家仍然缺乏一种快速准确地填补代谢网络缺口的计算方法。斯隆凯特琳癌症中心(Memorial Sloan Kettering Cancer Center)的研究人员提出了一种基于深度学习的方法——CHEbyshev Spectral HyperlInk pREdict
6/12/2023 1:34:00 PM
ScienceAI

全球首创 :分子之心开源新AI算法,攻克蛋白质侧链预测与序列设计难题

PSCP 深度架构 AttnPacker——大幅优化的AI算法。
6/5/2023 3:13:00 PM
机器之心

GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑

Yann LeCun 这个观点的确有些大胆。
3/27/2023 4:54:00 PM
机器之心

分子之心创始人许锦波:AI 蛋白质设计最新进展

编辑 | 绿萝1 月 11 日,在机器之心 AI 科技年会上,分子之心创始人、美国芝加哥丰田计算技术研究所终身教授、清华大学智能产业研究院(AIR)卓越访问教授许锦波发表主题演讲《AI 蛋白质设计最新进展》,在演讲中,他介绍了蛋白质结构预测与蛋白质设计,他表示 AI 蛋白质结构预测只是一个开始,分享了分子之心开发的 AI 蛋白优化和设计平台——MoleculeOS,以及在蛋白质侧链、抗体抗原复合物结构预测的最新研究成果。「人工智能颠覆了蛋白质结构预测,并正在改变蛋白质优化设计。」以下为许锦波在机器之心 AI 科技年
1/31/2023 2:58:00 PM
ScienceAI

CVPR 2021 | 时间序列疾病预测的因果隐马尔可夫模型

本文是对发表于计算机视觉和模式识别领域的顶级会议 CVPR 2021的论文“Causal Hidden Markov Model for Time Series Disease Forecasting(时间序列疾病预测的因果隐马尔可夫模型)”的解读。 该论文由北京大学王亦洲课题组与深睿医疗等单位合作,针对时间序列疾病预测的问题,提出了因果隐马尔可夫模型描述疾病的动态发展过程,并使用基于 VAE 的变分框架进行学习。通过对图像隐空间进行解耦,去除疾病无关因子与疾病预测的伪相关关系,从而提高预测的准确率和鲁棒性。
7/18/2022 5:03:00 PM
北京大学前沿计算研究中心

TOG 2020 | 基于骨骼一致性的单目视频人体运动重建

本文是对 2020 年 9 月发表于计算机图形学顶级期刊 ACM Transactions on Graphics(ToG)的论文《基于骨骼一致性的单目视频人体运动重建(MotioNet: 3D Human Motion Reconstruction from Monocular Video with Skeleton Consistency)》的解读。 该论文由北京大学与山东大学、北京电影学院、以色列特拉维夫与耶路撒冷大学合作,针对从单目视频中提取人体运动的问题,区别于直接回归关节坐标的方法,作者在神经网络中利用正向运动学,预测出时序一致的人体骨架及所对应的关节旋转,减小了网络预测的空间搜索范围,网络输出的结果也能直接运用于角色动画的驱动。
7/18/2022 5:02:00 PM
北京大学前沿计算研究中心

开源!港中文、MIT、复旦提出首个RNA基石模型

本文中 RNA-FM 模型的出现一定程度上缓解了 RNA 带标注数据紧张的现状,为其他研究者提供了访问大批量无标签数据的便捷接口。并且,该模型将以 RNA 领域基础模型的身份,为该领域的各种各样的研究提供强有力的支援与帮助。
7/16/2022 12:06:00 PM
机器之心

做时间序列预测有必要用深度学习吗?事实证明,梯度提升回归树媲美甚至超越多个DNN模型

在深度学习方法应用广泛的今天,所有领域是不是非它不可呢?其实未必,在时间序列预测任务上,简单的机器学习方法能够媲美甚至超越很多 DNN 模型。
3/6/2022 1:07:00 PM
机器之心

量子力学与机器学习相结合,预测高温下的化学反应

编辑/凯霞在高温下从氧化物中提取金属不仅对于钢铁等金属的生产至关重要,而且对回收利用也必不可少。但当前的提取过程是碳密集型的,会排放大量温室气体。研究人员一直在探索开发「更绿色」的工艺方法。第一性原理理论的自下而上的计算过程设计,将是一个有吸引力的替代方案,但迄今为止尚未实现。来自哥伦比亚大学的研究团队开发了一种新的计算技术,将量子力学和机器学习相结合,可准确预测金属氧化物对其「贱金属」的还原温度。该方法在计算上与常规计算一样有效,并且在测试中,比使用量子化学方法对温度效应的计算要求高的模拟更准确。该研究以「Aug
12/13/2021 6:24:00 PM
ScienceAI