预测
高精度预测蛋白构象变化,中国科大、上科大通用深度学习模型
编辑 | KX预测蛋白质构象变化是计算生物学和人工智能领域的一大挑战。 主流的 AlphaFold 等算法可以高通量预测蛋白质的静态结构,但对蛋白质构象变化预测却束手无策。 为了解决这个问题,中国科学技术大学和上海科技大学的研究人员,提出了一种新颖的深度学习策略,即利用高通量生物物理采样来规避与蛋白质构象转变相关的数据匮乏。
11/25/2024 5:54:00 PM
ScienceAI
改进蛋白突变稳定性预测,清华龚海鹏团队AI蛋白工程模型登Nature子刊
编辑 | KX准确预测蛋白质突变效应在蛋白质工程和设计中至关重要。 近日,清华大学龚海鹏团队提出了一套基于几何学习的模型套件——GeoStab-suite,其中包含 GeoFitness、GeoDDG 和 GeoDTm 三个模型,分别用于预测蛋白质突变后的适应度得分、ΔΔG 和 ΔTm。 GeoFitness 采用专门的损失函数,允许使用深度突变扫描数据库中的大量多标记适应度数据对统一模型进行监督训练。
11/11/2024 4:37:00 PM
ScienceAI
达摩院发布八观气象大模型:精度达1小时1公里,率先落地新能源场景
11月6日,阿里巴巴达摩院(湖畔实验室)在北京举行决策智能产品发布会,正式发布八观气象大模型,在全球气象模型基础上引入区域多源数据,时空精度最高可达1公里*1公里*1小时。 通过大幅提升对温度、辐照、风速等关键气象指标的预测性能,八观气象大模型率先落地新能源占比高的新型电力系统,助力国网山东电力调控中心成功预测了多次极端天气,新能源发电功率、电力负荷预测准确率分别提升至96%和98%以上。 传统上,气象学家们根据物理规律,将大气运动变化编写成一系列数学物理方程再进行数值计算,耗费大量算力资源,且受到物理模型的瓶颈制约,难以快速、高效地满足各行业不同准确率、分辨率的天气预需求。
11/6/2024 3:37:00 PM
新闻助手
全球首次:时序大模型突破十亿参数,华人团队 Time-MoE 预训练数据达 3000 亿个时间点
Time-MoE 采用了创新的混合专家架构,能以较低的计算成本实现高精度预测。 研发团队还发布了 Time-300B 数据集,为时序分析提供了丰富的训练资源,为各行各业的时间序列预测任务带来了新的解决方案。 在当今以数据为驱动的时代,时序预测已成为众多领域不可或缺的核心组成。
10/23/2024 10:51:58 PM
问舟
从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法
编辑 | KX蛋白质在生物体内扮演着不可或缺的角色,准确预测其功能对于实际应用至关重要。尽管高通量技术促进了蛋白质序列数据的激增,但揭示蛋白质的确切功能仍然需要大量时间和资源。目前,许多方法都依赖于蛋白质序列进行预测,而针对蛋白质结构的方法很少。
10/18/2024 3:37:00 PM
ScienceAI
从预测风暴到设计分子,微软的 AI 基础模型如何加速科学发现
编辑 | ScienceAI人们总是在寻找规律来解释宇宙,并预测未来。俗话说,「朝霞不出门,晚霞行千里」,人们常常用它来预测天气。AI 非常擅长发现模式并进行预测。现在,微软研究人员正在尝试将「基础模型」应用于科学领域。材料科学、气候科学、医疗保健和生命科学等科学学科有望通过 AI 取得进步。专家表示,针对这些学科量身定制的基础模型将加快科学发现的进程,使他们能够更快地创造出实用的东西,如药物、新材料或更准确的天气预报,同时也能更好地了解原子、人体或地球。「AI 是你工具箱中可以为你提供支持的工具,」微软研究院 A
10/9/2024 11:59:00 AM
ScienceAI
精准预测流产风险,上海交大等开发可解释AI算法,为早期预防带来希望
编辑 | ScienceAI上海交通大学李金金、上海市红房子妇产科医院金莉萍等组成的联合团队,开发了基于人工智能的流产风险预警平台,首次实现了在怀孕前,通过分析血清代谢物来精准预测流产风险。该研究以「Interpretable learning predicts miscarriage using pre-pregnancy serum metabolites」为题,于 2024 年 10 月发布在《The Innovation Medicine》。论文链接::流产的影响与研究挑战流产,尤其是反复自然流产(Recu
10/9/2024 11:58:00 AM
ScienceAI
原子、分子、复合物级性质预测均最佳,清华分子预训练框架登Nature子刊
编辑 | KXAI 已广泛用于药物发现和材料设计中的分子筛选。当前的自监督分子预训练方法往往忽略了分子的基本化学特性和物理原理。为了解决这个问题,来自清华大学的研究人员提出了一种称为分数去噪(Fractional denoising,Frad)的分子预训练框架,以学习有效的分子表示。通过这种方式,噪声变得可自定义,允许纳入化学先验,从而大大改善分子分布建模。实验表明,Frad 始终优于现有方法,在力预测、量子化学特性和结合亲和力任务中,取得最先进的结果。改进的噪声设计提高了力准确性和采样覆盖范围,这有助于创建物理一
9/20/2024 12:08:00 PM
ScienceAI
谷歌前高管创办的 Brightband 公司获 1000 万美元融资,可用 AI 预测极端天气
据彭博社报道,由谷歌前高管创办的初创公司 Brightband 周四(今日)宣布,其已获得 1000 万美元(AI在线备注:当前约 7089.5 万元人民币)A 轮融资。该轮融资由 Prelude Ventures 领投,参与投资者包括贝恩资本旗下的 Future Back Ventures 和 Slack 联合创始人卡尔・亨德森。图源 Pexels该公司由前谷歌高管朱利安・格林和三位科学家于今年夏天创立,旨在利用 AI 技术改善天气预报。该公司目的是开发一款付费产品,以及一个基于原始天气观测训练的开源 AI 预测
9/19/2024 8:09:28 PM
清源
港大发布OpenCity: 大模型驱动下的智慧城市"新内核"
代码链接: : : 导读精确的交通预测是实现高效城市规划和交通管理的关键,它有助于优化资源分配并改善出行体验。但是,现有的预测模型在面对未知区域和城市的零样本预测任务,以及长期预测时,表现往往不尽如人意。这些问题主要归因于交通数据在空间和时间上的异质性,以及跨时间和空间的显著分布变化。在本研究中,我们的目标是开发一个多功能、强鲁棒性和高适应性的时空基础模型,用于交通流量的预测。为此,我们设计了一种新型的基础模型——OpenCity,它能够捕捉并规范来自不同数据源的潜在时空模式,以促进在不同城市环境中的零样本泛化能
9/12/2024 10:41:00 AM
新闻助手
超越AlphaFold3,OpenAI投资的AI生物初创发布Chai-1,分子结构预测新SOTA
编辑 | ScienceAI近日,成立仅 6 个月的 AI 生物技术初创公司 Chai Discovery,发布用于分子结构预测的新型多模态基础模型 Chai-1,并附带了一份技术报告,比较了 Chai-1 与 AlphaFold 等模型的性能。Chai-1 可以统一预测蛋白质、小分子、DNA、RNA、共价修饰等,在与药物发现相关的各种任务中都达到 SOTA。公司联合创始人兼 CEO Joshua Meier 表示,Chai 的模型在测试的基准上表现更佳,成功率提升 10% 到 20%。他说:「例如,与 Alpha
9/11/2024 4:27:00 PM
ScienceAI
OpenCity 大模型预测交通路况:零样本下表现出色,来自港大百度
长时间交通状况预测,可以用大模型实现了。香港大学联合华南理工大学和百度,推出了长时间城市交通预测模型 ——OpenCity。而且泛化能力极强,可有效应用于广泛的交通预测场景。为了解决传统交通预测模型泛化性及长期预测能力不足的问题,研究团队新的基础模型 OpenCity。OpenCity 结合了 Transformer 架构和图神经网络,用以模拟交通数据中复杂的时空依赖关系。通过在大规模、异质性交通数据集上进行预训练,OpenCity 能够学习丰富、具有泛化性的表征,这些表征可有效应用于广泛的交通预测场景。相比于传统
8/31/2024 12:41:55 PM
清源
准确预测蛋白质「运动」?AlphaFold融合物理知识,南京大学团队蛋白构象运动新策略
编辑 | KX蛋白质如何进行构象运动,不仅是一个基本的生物物理问题,而且对于药物设计等实际应用也至关重要。尽管深度学习方法,比如 AlphaFold2 和 RoseTTAFold,可以高通量预测蛋白质的静态结构,但预测构象运动仍然是一个挑战。在此,南京大学、香港浸会大学(Hong Kong Baptist University)、中国科学院大学以及昌平实验室和莱斯大学合作,找到了一种新的方法来预测蛋白质在发挥作用时如何改变形状,这对于了解它们在生物系统中的工作方式非常重要。研究人员提出了一种解决构象运动的策略,即将
8/29/2024 3:40:00 PM
ScienceAI
Nature子刊,北大团队通用AI框架对蛋白-蛋白对接进行综合结构预测,弥合实验与计算的差距
编辑 | 萝卜皮蛋白质复合物结构预测在药物研发、抗体设计等应用中发挥着重要作用,然而由于预测精度有限,预测结果与实验结果经常出现不一致。北京大学、昌平实验室以及哈佛大学的研究团队提出了 ColabDock,这是一个通用框架,它采用深度学习结构预测模型来整合不同形式和来源的实验约束,而无需进一步进行大规模的再训练或微调。ColabDock 的表现优于使用 AlphaFold2 作为结构预测模型的 HADDOCK 和 ClusPro,不止在具有模拟残基和表面限制的复杂结构预测中,在借助核磁共振化学位移扰动以及共价标记进
8/7/2024 3:43:00 PM
ScienceAI
准确率达60.8%,浙大基于Transformer的化学逆合成预测模型,登Nature子刊
编辑 | KX逆合成是药物发现和有机合成中的一项关键任务,AI 越来越多地用于加快这一过程。现有 AI 方法性能不尽人意,多样性有限。在实践中,化学反应通常会引起局部分子变化,反应物和产物之间存在很大重叠。受此启发,浙江大学侯廷军团队提出将单步逆合成预测重新定义为分子串编辑任务,迭代细化目标分子串以生成前体化合物。并提出了基于编辑的逆合成模型 EditRetro,该模型可以实现高质量和多样化的预测。大量实验表明,模型在标准基准数据集 USPTO-50 K 上取得了出色的性能,top-1 准确率达到 60.8%。结果
8/6/2024 3:13:00 PM
ScienceAI
化学逆合成SOTA!上海交大团队提出SMILES对齐技术实现高效逆合成预测
编辑 | ScienceAI逆合成规划在药物研发中扮演着至关重要的角色,而单步逆合成预测更是这一过程的核心。通过运用Transformer等先进的序列模型,将单步逆合成预测问题转化为从产物SMILES表示到反应物SMILES表示的翻译任务,已经成为一种广泛采用且效果显著的策略。然而,这种方法往往忽略了一个关键点:在反应物和产物之间,存在大量可以被直接利用的相同子结构。对这些子结构利用的不充分限制了模型预测的效率和准确性。2024年7月,上海交通大学人工智能研究院金耀辉、许岩岩研究团队在《Journal of Che
7/30/2024 3:00:00 PM
ScienceAI
强过「黄金标准」,快3,500倍,成本低10万倍,物理建模融合AI,谷歌天气模型登Nature
编辑 | KX地球正以前所未有的方式变暖,但气温升高对我们的未来意味着什么尚不完全清楚。全球哪些地区将面临长期干旱?大型热带风暴将使哪些沿海地区的洪灾更加频繁?为了回答这些问题,科学家需要能够准确预测地球气候。现在,Google Research 研究团队提出一种将传统的基于物理建模与 ML 相结合的新方法——NeuralGCM,可以准确高效地模拟地球大气层。比现有模型更快、计算成本更低、更准确。NeuralGCM 可以生成 2-15 天的天气预报,比目前基于物理的「黄金标准」模型更准确。在 1 至 10 天预报方
7/23/2024 2:08:00 PM
ScienceAI
成功率超越RoseTTAFold系列,用序列信息直接预测蛋白质-配体复合物结构
编辑 | 萝卜皮蛋白质-配体对接是药物发现和开发中一种成熟的工具,用于缩小实验测试的潜在治疗范围。然而,高质量的蛋白质结构是必需的,而且蛋白质通常被视为完全或部分刚性的。在这里,柏林自由大学(Freie Universität Berlin)的研究人员开发了一个人工智能系统,可以直接从序列信息预测蛋白质-配体复合物的完全柔性全原子结构。虽然经典对接方法仍然更胜一筹,但这也取决于目标蛋白质的晶体结构。除了预测灵活的全原子结构外,预测置信度指标 (plDDT) 还可用于选择准确的预测,以及区分强结合剂和弱结合剂。该研究
6/18/2024 6:29:00 PM
ScienceAI
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
GPT
开源
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
神经网络
腾讯
计算
研究
Sora
AI for Science
3D
AI设计
Anthropic
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
深度学习
模态
苹果
AI视频
驾驶
文本
搜索
xAI
人形机器人
Copilot
神器推荐
LLaMA
大语言模型
具身智能
字节跳动
Claude
算力
安全
应用
视频生成
科技
视觉
干货合集
亚马逊
2024
AGI
特斯拉
DeepMind
架构