AI for Science
6.85亿次AI加速模拟,分析2万种材料,Meta发布催化剂数据集OCx24
编辑 | X_X近日,Meta FAIR 与多伦多大学和 VSParticle(荷兰纳米技术工程公司 )合作,发布了开放催化剂实验 2024(OCx24)数据集,该数据集包含 572 个使用湿法和干法合成的样品,并经过 X 射线荧光和 X 射线衍射表征。 为新催化剂的开发提供了宝贵的见解。 该研究是 Meta FAIR 开放催化剂项目的延续,旨在利用人工智能来建模和发现新的催化剂,应对气候变化带来的能源挑战。
探索蛋白质动态变化,新AI方法JAMUN比标准MD模拟更快、更准确
编辑 | 白菜叶蛋白质结构的动态变化对于理解其功能和开发靶向药物治疗至关重要,尤其是对于隐蔽的结合位点。 然而,现有的生成构象集合的方法存在效率低下或缺乏通用性的问题,无法在训练系统之外发挥作用。 分子动力学 (MD) 模拟是当前探索蛋白质运动的标准,但计算成本高昂,且受短时间步长要求的限制,因此难以捕捉较长时间尺度上发生的更广泛蛋白质构象变化。
AlphaFold3级性能、开源、可商用,MIT团队推出生物分子预测模型Boltz-1
图示:来自测试集的靶标上的 Boltz-1 的示例预测。 (来源:论文)编辑 | 萝卜皮2024 年 11 月 18 日,麻省理工学院(MIT)的研究人员宣布推出 Boltz-1,这是一个开源模型,旨在准确模拟复杂的生物分子相互作用。 Boltz-1 是第一个完全商业化的开源模型,在预测生物分子复合物的 3D 结构方面达到 AlphaFold3 级精度。
分子表征从「图」到「视频」,1.2亿帧、200万分子,湖大分子视频基础模型登Nature子刊
编辑 | KX分子表征已经从「图」扩展到「视频」了。 两年前,湖南大学的研究团队,开发了具有化学意识的深度学习框架 ImageMol,用于从大规模分子图像中学习分子结构,可准确预测分子特性和药物靶点。 现在,该研究团队将 ImageMol 进行了重大升级,提出一个基于分子视频的基础模型,称为 VideoMol,该模型在 1.2 亿帧的 200 万个未标记的类药物分子和生物活性分子上进行了预训练。
AI面临的五个蛋白质设计问题,Nature找了一群专家来讨论
编辑 | 白菜叶Alena Khmelinskaia 希望设计定制蛋白质就像订餐一样简单。 她说,想象一下一台「自动售货机」,任何研究人员都可以使用它来指定他们想要的蛋白质的功能、大小、位置、分子伴侣或者其他特征。 「理想情况下,你会得到一个可以同时完成所有这些事情的完美设计。
AlphaFold3开源了,诺奖AI工具人人可用,开启生物分子设计新时代
编辑 | ScienceAIAlphaFold3 终于开源了。 六个月前 AlphaFold3 发布的时候,谷歌 DeepMind 没有公布其论文代码,因此引发了学界的巨大争议。 如今,DeepMind 于 11 月 11 日宣布,科学家现在可以免费下载软件代码,并将 AlphaFold3 用于非商业应用。
ByteDance Research登Nature子刊:AI+冷冻电镜,揭示蛋白质动态
2024 年的诺贝尔化学奖颁发给了在结构生物学领域取得重大成就的 David Baker 团队和 AlphaFold 团队,激发了 AI for science 领域新的研究热潮。 近两年科学界一个饱受争议的命题是:“AlphaFold 是否终结了结构生物学? ” 首先,AlphaFold 之类的结构预测模型的训练数据正是来自于以 X 射线、冷冻电镜(cryo-EM)等为代表的传统结构解析方法。
谷歌、MIT等开发多智能体医疗决策框架MDAgents,医学LLM新用法
编辑 | 白菜叶基础模型正在成为医学领域的宝贵工具。 然而,尽管它们前景广阔,但在复杂的医学任务中如何最好地利用大型语言模型 (LLM) 仍是一个悬而未决的问题。 麻省理工学院、谷歌研究院和首尔国立大学医院的研究人员提出了一种新颖的多智能体框架,称为医疗决策智能体 (MDAgents),它通过自动为 LLM 团队分配协作结构来帮助解决这一差距。
量子级精度,静态到动态,微软蛋白MD模拟系统登Nature
编辑 | KX生物世界的本质在于分子及其相互作用的不断变化。 了解生物分子的动力学和相互作用对于破译生物过程背后的机制,以及开发生物材料和药物至关重要。 正如诺贝尔物理学奖得主理查德·费曼(Richard Feynman)的名言:「所有生物体的行为都可以通过原子的颤动和摆动来理解。
普林斯顿王梦迪团队提出蛋白水印方法,助力AI蛋白生成的版权保护与安全
编辑 | 萝卜皮近年来,随着生成式人工智能的发展,蛋白质结构预测和设计的能力显著提高。 然而,蛋白质生成模型在版权保护和生成有害内容(例如生物安全)方面面临着诸多问题。 生物大模型的构建和训练十分昂贵,有着保护模型版权和生成结果的现实需要;同时,需要有技术可靠地追踪和验证生成蛋白质结构,消除潜在的生物安全隐患。
创新能力超越AI Scientist,上海AI Lab「AI 科研团队」VirSci来了
编辑 | ScienceAI由上海人工智能实验室提出的 VirSci(Virtual Scientists)系统是一个基于大语言模型(LLM)的多智能体协作平台,专注于模拟科学家团队的合作过程,从而加速科研创新。 不同于以往的单智能体系统,VirSci 通过使用真实科学家的数据来模拟科学团队的多人协作,不仅可以通过团队成员的合作讨论来生成更具创新性和影响力的科研想法,还展现出作为「科学学」(Scienceof Science)研究工具的巨大潜力。 该研究以「Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation」为题,于 2024 年 10 月 12 日发布在 arXiv 预印平台。
为233种疾病推荐候选药物,中国科学院深度生成模型助力药物发现,登Nature子刊
编辑 | 萝卜皮了解转录对化学扰动的反应是药物发现的核心,但对疾病化合物组合进行详尽的实验筛选是不可行的。 为了克服这一限制,中国科学院、四川大学华西医院的研究人员提出了 PRnet,这是一种扰动条件下的深度生成模型,可预测转录对从未在体细胞和单细胞水平上进行实验扰动的新化学扰动的反应。 评估表明,PRnet 在预测新化合物、新途径和新细胞系的反应方面优于已有方法。
分类准确率达99%,山大团队提出基于对比学习的基因数据分类方法
编辑 | 萝卜皮深度神经网络模型的快速进步显著增强了从微生物序列数据中提取特征的能力,这对于解决生物学挑战至关重要。 然而,标记微生物数据的稀缺性和复杂性给监督学习方法带来了巨大的困难。 为了解决这些问题,山东大学的研究人员提出了 DNASimCLR,这是一个专为高效基因序列数据特征提取而设计的无监督框架。
登Nature,AI设计DNA开关,MIT团队实现精确的细胞控制
编辑 | 萝卜皮近年来,基因编辑技术以及各种基因治疗方法使科学家能够改变活细胞内的基因。 然而,只影响特定细胞类型或组织中的基因,而不是影响整个生物体的基因,一直很困难。 部分原因是人们对控制基因表达和抑制的 DNA 开关 [即顺式调控元件 (CRE)] 的理解仍面临挑战。
丹麦首台AI超级计算机,NVIDIA技术加持,服务于量子计算、清洁能源、生物技术等领域
编辑 | 萝卜皮2024 年 10 月 23 日 NVIDIA 创始人兼首席执行官黄仁勋携手丹麦国王启动该国最大 AI 超级计算机,旨在实现量子计算、清洁能源、生物技术等领域的突破,服务丹麦社会乃至全球。 丹麦首台 AI 超级计算机以丹麦神话中的女神命名为 Gefion。 Gefion 由丹麦人工智能创新中心 (DCAI) 运营,该公司由全球最富有的慈善基金会 Novo Nordisk 基金会和丹麦出口与投资基金资助成立。
AI 驱动化学空间探索,大语言模型精准导航,直达目标分子
作者 | 「深度原理」陆婕妤编辑 | ScienceAI现代科学研究中,化学空间的探索是化学发现和材料科学的核心挑战之一。 过渡金属配合物(TMCs)的设计中,由金属和配体组成的庞大化学空间为多目标优化的搜索带来了难度。 为了解决这一问题,来自「深度原理」 (Deep Principle) 和康奈尔大学的研究者们开发了一种名为 LLM-EO(Large Language Model for Evolutionary Optimization)的新型工作流程算法,释放大型语言模型(LLM)的生成和预测潜能,显著提高了化学空间探索的效率。
AI搞科研?西湖大学发布「AI科学家」Nova,效果比SOTA竞品提升2.5倍
编辑 | ScienceAI伟大科学家的研究,往往开始于一个小的灵感、小的创意。 长久以来,科学创新与研究能力被视为人类在人工智能时代中坚守的一片独特领地。 然而,一篇来自西湖大学深度学习实验室的论文在科学界掀起了波澜。
AI 发现16万种新RNA病毒成果登上《Cell》后,我们和阿里云算法专家贺勇聊了聊
近期,AI for Science 领域的惊喜不断,持续在物理、化学、生物领域开花结果。 不仅诺贝尔物理和化学奖双双颁给 AI 领域的科学家,阿里云与中山大学的科研也带来了RNA病毒寻找的突破,国际顶级学术期刊《Cell》收录了这一研究论文。 《基于人工智能探索和记录隐藏的RNA病毒世界》论文提出深度学习模型"LucaProt",用于快速准确判别RNA病毒,颠覆传统病毒发现方法。