AI for Science
ScienceAl 2024「AI+药物&医疗&基因组&细胞」专题年度回顾
编辑 | 白菜叶2024 年,药物、医疗、基因组学和细胞生物学领域迎来了前所未有的技术突破与创新。 从 AI 驱动的药物设计到基因编辑的精准控制,从单细胞分析到多模态医疗决策,这一年见证了科学与技术的深度融合,为人类健康带来了无限可能。 在药物研发领域,AI 驱动的分子设计与优化方法不断涌现,显著提升了新药发现的效率与精准度。
12/31/2024 3:43:00 PM
ScienceAI
Science子刊,斯坦福AI方法表示蛋白互作节点,增强功能识别与PPI推理
编辑 | 白菜叶生物网络通过详细描绘基因、蛋白质及其他细胞成分之间的复杂相互作用,为建模生物系统提供了重要工具。 这些网络将实体表示为节点,将其相互作用(从物理连接到功能关联)表示为边,从而为解析生物系统和过程的复杂性奠定了基础。 例如,在蛋白质-蛋白质相互作用(PPI)网络中,复杂的连接关系包含了理解细胞过程和疾病机制的关键信息。
12/31/2024 3:42:00 PM
ScienceAI
意念操控电脑,如手掌般精准!MIT脑机接口新技术登Nature子刊
编辑 | 2049想象一下,仅凭思维就能自如地操控电脑鼠标,就像健全人使用手部一样精准和流畅。 这听起来像科幻片中的场景,但在加州理工学院(MIT)的最新研究中,这样的未来正在成为现实。 研究人员开发出了一种名为「FENet」的突破性技术,让瘫痪患者能够更精准地用意念控制电脑设备。
12/30/2024 11:58:00 AM
ScienceAI
直逼记录极限,机器学习助力开发全新钙钛矿电池原料
编辑丨&钙钛矿太阳能电池(PSCs),近年来成为了新兴绿色环保电池的代表。 而影响其性能的空穴传输材料(HTMs)的设计主要依赖于实验者定性与识别 HTM 结构中的模式。 这种方法缺乏对新材料的机制理解,同时还需要在高维数据集中进行模式识别。
12/27/2024 4:03:00 PM
ScienceAI
像拼乐高一样设计新药,EPFL、牛津团队AI方法精确设计优化分子3D结构
编辑 | 2049想象一下,如果开发一款新药就像积木搭建一样,可以自由组合不同的分子部件,并准确预测它们与目标蛋白质的结合效果。 这听起来可能很科幻,但最新发表的研究让这一愿景更近了一步。 瑞士联邦理工学院(EPFL)、剑桥大学、康奈尔大学、牛津大学的联合研究团队开发的AI系统 DiffSBDD ,就像是一位经验丰富的分子建筑师,能够精确设计和优化药物分子的 3D 结构。
12/27/2024 3:59:00 PM
ScienceAI
ScienceAI 2024「AI+材料&化学」专题年度回顾
编辑 | 2049在数字化转型的背景下,人工智能技术正在从根本上改变化学与材料科学的研究范式。 2024年,这场技术革新在多个领域展现其变革力量。 在分子设计领域,基于图神经网络(GNN)和 Transformer 架构的深度学习模型,结合分子动力学模拟,实现了分子性质的精确预测与优化。
12/26/2024 4:39:00 PM
ScienceAI
速度提升44%,节能153倍,清华使用内存计算硬件高效标记数据
编辑丨&对于现在的许多 AI 任务来说,标记数据是一个耗时、劳动密集型且昂贵的过程。 深度贝叶斯主动学习 (DBAL) 以指数级方式提高标记效率,从而大幅降低成本。 为了解决 DBAL 需要高带宽的数据传输和概率计算的问题,来自清华大学的团队提出一种忆阻器随机梯度 Langevin 动力学原位学习方法。
12/26/2024 4:38:00 PM
ScienceAI
空间蛋白质组学:构建复杂组织的尺度图谱
编辑丨toileter当人类前行至远方,我们以自己的脚步衡量出道路,以道路为丝线绘制出这片大地的地图。 而现在,我们将目光望进自己的体内,意图探索生物系统的交错复杂。 与此,空间蛋白质组学为我们带来了更清晰的笔迹,使得人类在对抗疾病的道路上得以踏上更便捷的道路。
12/24/2024 2:01:00 PM
ScienceAI
麦吉尔大学Ding Lab基于深度学习开发单细胞水平转座子位点表达定量模型,登Nature子刊
编辑丨ScineceAI该论文介绍 MATES:一种基于深度学习的单细胞水平转座子定量工具。 MATES 使用基于自编码器的模型,通过分析转座子区域周围独特比对读段的分布,概率性地将多重比对转座子读段分配到特定位点。 通过深度神经网络,MATES 学习独特读段分布与多重比对读段来自特定位点的可能性之间的关系。
12/23/2024 3:19:00 PM
ScienceAI
ScienceAl 2024「AI+蛋白&核酸&分子互作」专题年度回顾
编辑 | 萝卜皮2024年,科学界迎来了重要的突破与创新,尤其是在人工智能与结构生物学的结合领域。 正如今年诺贝尔奖颁发所体现的那样,人工智能(AI)技术的迅猛发展正在推动各学科的深度融合,揭示了生命科学研究的新机遇与前景。 在这一年里,AI 与生物学的交汇点愈发引人注目,成为推动现代生物医药、医学研究、生命科学等领域变革的重要力量。
12/23/2024 3:17:00 PM
ScienceAI
新SOTA,浙大、中科院深度学习模型可靠、准确预测蛋白-配体,助力药物开发
编辑 | 萝卜皮准确预测蛋白质-配体相互作用对于理解细胞过程至关重要,目前仍面临着诸多挑战。 中国科学院、浙江大学的研究人员提出了 SurfDock,这是一种深度学习方法,通过将蛋白质序列、三维结构图和表面级特征整合到等变架构中来解决这一挑战。 SurfDock 在非欧几里德流形上采用生成扩散模型,优化分子平移、旋转和扭转以生成可靠的结合姿势。
12/18/2024 2:24:00 PM
ScienceAI
性能远超当前SOTA,首个可解释RNA的AI植物基础模型来了,整合1124种植物RNA信息
编辑丨&植物 RNA 的复杂序列编码了大量的生物调节元件,这些元件在协调植物生长、发育和适应环境压力的关键方面起到重要作用。 基础模型 (FM) 的最新进展证明了它们在破译生物学中复杂“语言”方面前所未有的潜力。 于最近的研究中,东北师范大学、英国约翰·英尼斯中心( John Innes Centre)和埃克塞特大学(University of Exeter)等组成的团队提出了 PlantRNA-FM,一种专为植物设计的高性能且可解释的 RNA 基础模型。
12/16/2024 2:07:00 PM
ScienceAI
机械系统也能自主学习!密歇根大学团队构建了全新数学框架,登上Nature Communications
编辑丨&受人脑复杂运作的启发,神经网络已经彻底改变了各个领域的生产研究现状。 然而,考虑到基于计算机的神经网络需求的大量计算与极高能耗,特别是传统数字处理器的能源效率,机械神经网络的发展逐步被提上日程。 在光学神经网络中,波-物质相互作用被用来实现机器学习,类似的思路也可以被用来建立机械神经网络(MNN)的学习框架。
12/11/2024 2:29:00 PM
ScienceAI
LLM学习原子「结构语言」,生成未知化合物的晶体结构,登Nature子刊
编辑 | 萝卜皮生成合理的晶体结构通常是预测材料化学成分及其性质的第一步,但当前大多数预测方法计算成本高,制约了创新进程。 通过使用优质生成的候选结构来预测晶体结构,可以突破这一瓶颈。 在最新的研究中,英国雷丁大学(University of Reading)的研究人员介绍了 CrystaLLM,这是一种基于晶体学信息文件 (CIF) 格式的自回归大型语言建模 (LLM) 的多功能晶体结构生成方法。
12/10/2024 6:32:00 PM
ScienceAI
量化617,462种人类微蛋白必需性,北大LLM蛋白质综合预测与分析,登Nature子刊
编辑 | 萝卜皮人类必需蛋白(HEP)对于个体的生存和发育必不可少。 然而,鉴定 HEP 的实验方法通常成本高昂、耗时费力。 此外,现有的计算方法仅在细胞系水平上预测 HEP,但 HEP 在活体人类、细胞系和动物模型中有所不同。
12/9/2024 11:55:00 AM
ScienceAI
字节&北大Nature子刊新成果:自旋本征态的高效精确求解
编辑 | ScienceAI近些年来 AI for Science 在众多领域取得重大成功。 其中,基于神经网络的量子变分蒙特卡洛方法 (NNVMC) 在量子化学领域展现出强大潜力,备受关注。 最近字节跳动研究部门 ByteDance Research 和北京大学团队在 NNVMC 框架中融入物理对称性,实现了量子激发态的高效精确求解。
12/6/2024 2:50:00 PM
ScienceAI
仅总参数量0.1%、单GPU 15分钟完成微调,人类基因组基础模型NT登Nature子刊
编辑 | 萝卜皮从 DNA 序列预测分子表型仍然是基因组学中的一个长期挑战,通常是由于注释数据有限以及无法在任务之间转移学习所致。 在这里,英国伦敦 InstaDeep 的研究人员提出了在 DNA 序列上进行预训练的基础模型,称为 Nucleotide Transformer;其参数范围从 5000 万到 25 亿,并整合了来自 3,202 个人类基因组和 850 个不同物种基因组的信息。 这些 Transformer 模型可生成特定上下文的核苷酸序列表示,即使在低数据环境下也能实现准确预测。
12/4/2024 2:20:00 PM
ScienceAI
打破GNN与语言模型间壁垒,图辅助多模态预训练框架用于催化剂筛选,登Nature子刊
编辑 | KX吸附能是一种反应性描述符,必须准确预测,才能有效地将机器学习应用于催化剂筛选。 该过程涉及在催化表面上的不同吸附构型中找到最低能量。 尽管图神经网络在计算催化剂系统的能量方面表现出色,但它们严重依赖原子空间坐标。
12/3/2024 2:42:00 PM
ScienceAI
资讯热榜
企业级模型推理部署工具vllm使用指南 - 部署最新deepseek-v3-0324模型
上海AI实验室开源InternVL3系列多模态大型语言模型
全能且实用!实战测评谷歌最新模型Gemini 2.5 Pro
50组多风格提示词,全面测评Midjourney V7生图效果!
Deepseek 突破 AI 训练烧钱魔咒:1.2 万美元 1/525 成本 MT-Bench 跑分媲美 GPT-4o
全日程揭晓!ICLR 2025论文分享会我们北京见
斯坦福2025 AI指数出炉!中美AI对决差距仅剩0.3%,DeepSeek领衔
5分钟直出46页论文!谷歌Deep Research完爆OpenAI,最强Gemini 2.5加持
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
神经网络
腾讯
计算
研究
Sora
AI for Science
3D
AI设计
Anthropic
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
深度学习
模态
苹果
AI视频
驾驶
文本
搜索
xAI
人形机器人
Copilot
大语言模型
神器推荐
LLaMA
字节跳动
具身智能
Claude
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
DeepMind
架构