AI for Science

模拟5亿年进化的ESM3在Science发布了,可推理蛋白质序列、结构和功能

编辑 | 萝卜皮2024 年夏天 EvolutionaryScale 推出了 ESM3,一款面向蛋白质语言的大模型,成功在自然进化未曾涉足的区域设计出功能性蛋白。 同期上线了该研究的预印版本。 时隔半年,该研究以「Simulating 500 million years of evolution with a language model」为题,于 2025 年 1 月 16 日在《Science》发布。

Nature重磅:微软生成式AI材料设计工具,稳定性提升2倍,实验验证误差低于20%!

编辑 | 2049材料创新是推动技术进步的关键驱动力之一。 从 20 世纪 80 年代锂钴氧化物的发现到如今的锂离子电池技术,材料科学的每一次突破都深刻影响着我们的日常生活。 然而,传统的材料发现方法依赖于耗时且昂贵的实验试错过程,而计算筛选方法虽然加速了这一过程,但仍然受限于已知材料的数量。

川普2.0或削减环境、传染病研究,推动AI、量子、太空探索

编辑 | 2049随着唐纳德·特朗普(Donald Trump)准备开启其第二任美国总统任期,科学界正呈现出截然不同的两种前景。 一些技术公司、太空探索爱好者、人工智能开发者等群体对未来几年的政策前景充满期待,认为这将为创新与探索带来新机遇。 然而,众多从事气候、地球科学和生物医学研究的科学家和学者们却对重要研究项目可能面临的削减、降级或贬损表示担忧。

AI赋能传统力场:字节跳动开发高精度通用小分子力场ByteFF

编辑 | ScienceAI小分子力场是药物发现中的重要工具,在计算机辅助药物设计中发挥关键作用。 化学空间覆盖广泛且高效精确的小分子力场将为药物发现奠定可靠的基础。 尽管基于机器学习的 MLFF(如 ANI-2x,MACE-OFF23 等)能够提供非常精确的小分子势能面预测,但它们的训练需要海量数据量,且推理速度较慢,还存在外推场景不确定度大等问题。

交大O1医疗探索:延长AI思考时间,解锁复杂推理诊断

编辑 | ScienceAI当医生面对复杂病例时,往往需要反复思考、权衡多种可能性,才能得出准确诊断。 以鉴别诊断为例,它要求医生生成可能的诊断列表,并通过评估临床发现,逐步排除不符合条件的选项。 如今,AI 也学会了这种「深思熟虑」的诊断方式。

AI预测自然灾害,全球首个支持全天候灾害响应的多模态超高分辨率数据集​BRIGHT

编辑 | ScienceAI这是全球首个支持全天候灾害响应的多模态超高分辨率数据集,论文和数据集已公开,作者团队来自东京大学(UTokyo),理化学研究所(RIKEN),苏黎世联邦理工学院(ETH Zurich)和微软亚洲研究院(MSRA)。 论文链接::,自然灾害和人为灾害频发,给全球范围内的人类社会带来了重大影响。 快速而精准的灾后评估尤其是建筑损毁评估,是制定紧急救援决策、减少人员伤亡和财产损失的重要依据。

AI生物学家:当「基础模型」撞上「生物学混沌」,谁才是解谜高手?

编辑丨toileter在如今的 AI for Biology 社区里,当今的词汇是基础模型。 每个人都希望将更多事物的更大的数据放入更大的模型中进行计算测试。 虚拟细胞模型将使研究者们能够预测细胞状态如何响应化学扰动而产生变化。

AMD与约翰霍普金斯大学联手:AI实验室copilot自动化科研,成本节约84%!

编辑 | 2049科学研究,尤其是机器学习领域的研究,往往需要大量的时间和资源投入,从最初的构思到最终的结果产出,每一步都充满了挑战。 近年来,大型语言模型(Large Language Models,LLMs)在自然语言处理和代码生成方面取得了显著进展,这为自动化科学研究提供了新的可能性。 然而,现有的自动化研究工具通常只能处理单个环节,如文献综述或实验设计,无法实现全流程的自动化。

AI 驱动科学大爆发!从蛋白质到数学证明,2024 年最值得关注的科技突破

编辑 | ScienceAI2024 年对于 AI for Science 而言,可谓硕果累累:两个诺贝尔奖再度聚焦人工智能与科学的先驱性结合。 其一是诺贝尔化学奖,颁发给了在蛋白质设计与蛋白质结构预测领域做出开创性贡献的 David Baker 博士、John Jumper 博士以及Demis Hassabis 博士;其二是诺贝尔物理学奖,授予了 John J. Hopfield 博士与 Geoffrey Hinton 博士,以表彰他们在人工神经网络及其机学习核心原理方面的奠基性工作。

病毒接下来会做什么?AI 正在帮助科学家预测它们的演变

编辑丨toileter目前期望的防范病毒的措施是通过查看病毒的基因序列来预测病毒将如何进化。 距离那种方法还有很长的路要走,但越来越多的研究小组正在使用人工智能 (AI) 来预测 SARS-CoV-2、流感和其他病毒的进化。 病毒(尤其是 SARS-CoV-2 等 RNA 病毒)通过积累新的突变不断进化。

分子特性预测新框架来了!浙大侯廷军团队、匹兹堡大学联合提出跨通道学习,各大基准表现亮眼

编辑 | 萝卜皮可靠的分子特性预测对于各种科学研究和工业应用(例如药物研发)至关重要。 然而,由于数据稀缺,加上物理化学和生物特性与传统分子特征化方案之间的高度非线性因果关系,使得开发稳健的分子机器学习模型变得异常复杂。 匹兹堡大学(University of Pittsburgh)与浙江大学侯廷军团队合作开发了一种多通道预训练框架,可以稳健学习利用化学知识。

AI华佗?港中大、深圳大数据研究院提出医疗推理大模型HuatuoGPT-o1

编辑 | 白菜叶OpenAI o1 的突破凸显了通过增强推理能力来提高自然语言大模型(LLM)的应用潜力。 然而,大多数推理研究都集中在数学任务上,而医学等领域尚未得到充分探索。 医学领域虽然不同于数学,但鉴于医疗保健的高标准,它也需要强大的推理能力来提供可靠的答案。

简化芯片设计传统,AI训练的新型算法正改变芯片研发范式

编辑丨&自1971年第一个商用微处理器的草图面世以来,芯片设计已经取得了长足的进步。 但是,随着芯片变得越来越复杂,设计人员必须解决的问题也越来越复杂。 而我们目前的工具并不总是能胜任这项任务。

人工智能走向核能,互相依赖的时代发展新搭档

编辑丨toileter随着 AI 的能源需求愈发贪婪,风能、太阳能等时兴热门清洁能源已经无法满足 AI 扩张的胃口。 于此时此刻,核电的炒作宛如密西西比河的河水波澜层起。 近些年来,虽然核电的支持者一直在宣扬「核电复兴」,但由于其高昂的成本与较高的维护成本,核能复兴还未获得站上风口的机会。

GPT做不好图生成?Tokenization是关键!新方法重新定义图生成和表示方式

编辑 | ScienceAI图(Graphs)是描述复杂关系和结构化数据的重要工具,从分子设计到社交网络分析,它们在许多领域都扮演着关键角色。 然而,图生成的高效性与灵活性一直是一个挑战。 今天,我们向大家介绍一项突破性的研究——Graph Generative Pre-trained Transformer,简称 G2PT,一个重新定义图生成和表示方式的自回归模型。

AI模拟细胞,走向全新虚拟生命,斯坦福团队呼吁是时候走出全新的一步了

编辑丨&生命的诞生充满谜团。 从第一个蛋白质分子出现,再到首个细胞完成了自己的分裂。 现在的奇迹来自于一个个鲜活的细胞聚合体。

ScienceAl 2024「AI+药物&医疗&基因组&细胞」专题年度回顾

编辑 | 白菜叶2024 年,药物、医疗、基因组学和细胞生物学领域迎来了前所未有的技术突破与创新。 从 AI 驱动的药物设计到基因编辑的精准控制,从单细胞分析到多模态医疗决策,这一年见证了科学与技术的深度融合,为人类健康带来了无限可能。 在药物研发领域,AI 驱动的分子设计与优化方法不断涌现,显著提升了新药发现的效率与精准度。

Science子刊,斯坦福AI方法表示蛋白互作节点,增强功能识别与PPI推理

编辑 | 白菜叶生物网络通过详细描绘基因、蛋白质及其他细胞成分之间的复杂相互作用,为建模生物系统提供了重要工具。 这些网络将实体表示为节点,将其相互作用(从物理连接到功能关联)表示为边,从而为解析生物系统和过程的复杂性奠定了基础。 例如,在蛋白质-蛋白质相互作用(PPI)网络中,复杂的连接关系包含了理解细胞过程和疾病机制的关键信息。