专注AI+制造:创新奇智大模型工业落地初显成效,探索工业智能机器人新方向

最近的大模型行业,似乎有一种「暴风雨来临前的平静」。整个 8 月,OpenAI 连续不断的行动似乎在告诉我们:风向要变了。从发布 System Card,开放大模型微调能力,再到针对逻辑能力改进,可个性化训练部署的「草莓」模型,一系列曝光的项目和产品,都显现着实用化的明确目的。                          OpenAI 研究员 Trevor Creech 的推文。大模型的领军企业似乎也把技术的落地放在了首位。大模型的发展正在呈现不平衡的景象:在一边,技术覆盖已有了可观的数字,OpenAI 宣布

最近的大模型行业,似乎有一种「暴风雨来临前的平静」。

整个 8 月,OpenAI 连续不断的行动似乎在告诉我们:风向要变了。从发布 System Card,开放大模型微调能力,再到针对逻辑能力改进,可个性化训练部署的「草莓」模型,一系列曝光的项目和产品,都显现着实用化的明确目的。

图片

                          OpenAI 研究员 Trevor Creech 的推文。大模型的领军企业似乎也把技术的落地放在了首位。

大模型的发展正在呈现不平衡的景象:在一边,技术覆盖已有了可观的数字,OpenAI 宣布 ChatGPT 每周活跃用户量达到两亿,走开源路线的 Meta 则报告 Llama 系列模型下载量接近 3.5 亿;但在另一边,原本预料中对于众多行业的「颠覆」似乎还没有起势。

对于工业落地来说,新技术的应用意味着切实能够带来生产力的提升。各家科技公司已经走到了比拼技术商业化的攻坚阶段,比拼的是谁落地得更快,谁的落地更实用。

就在这波降低技术门槛、优化模型的大潮中,国内的一家公司脱颖而出,它从创立之初就确立了大模型「工业化落地」的方向,并已经取得了一系列成果。

创新奇智的工业大模型,正在快速落地

在工业领域,创新奇智为客户量身打造的智能化数据治理解决方案正在发挥作用。

面向制造业,创新奇智打造出了实用化的设备维护智能体。在与中加特电气的合作中,基于大模型应用 ChatBI 及 ChatDoc,结合工厂 MES 系统(制造执行系统),创新奇智在生产端打通了设备的维护保养闭环。

使用这一套工具,人们可以通过简单对话的方式实现生产设备数据查询、故障预测、根因分析、设备维修告警、维修方案推荐、维修工单生成等功能,进而执行设备保养维修的全流程智能化维护。

图片

采用大模型智能体方案后,人们可以通过 AI 预防生产故障,减少维修次数,每年可以降低多达 265 万维修成本。同时,因为设备故障检修次数变少,生产效率可以提升 36.3%。通过对数据的根因分析,用户更可以快速找到设备故障的原因,维修响应时间降低了 30%,解决故障的时间从平均 10 小时,降到了 7 小时以内。

除了提升维护效率,在很多行业中,大模型技术也可以帮助人们快速分析数据,辅助进行决策,大大提升数据和信息资产积累的效率。

平安资管拥有庞杂的数据库系统,包含数万张数据表及数十万计的字段,存在大量结构化、非结构化、半结构化数据。面对庞大的数据资产,各表单之间复杂的关系网络,要想用人力进行梳理,就需要耗费大量时间。

人们将所有数据接入到大模型数据管控平台中,通过 ChatBI 应用为客户实现数据分析洞察,通过 ChatDoc 应用为客户实现数据运维洞察,充分解决了以上难题。在实践中,ChatBI 可以帮助用户仅通过对话的方式,即刻查询到所需的指标、表、字段等信息;还可以快速追踪数据的来源和流向,了解数据在各系统之间的流动情况,让数据盘点效率提升了 10 倍。

图片

而 ChatDoc 可以帮助客户通过对话的方式 ,即刻生成某项信息报错后的解决方案,还可以快速查询合规要求,生成操作建议,将整体误操作事件降低了 80%。

当前,围绕制造业打造的大模型解决方案通常可分为两类。一类涉及产线运营效率提升,如工业质检;另一类则被称作企业信息智能,信息和知识密度较大,非常适合大模型的应用

这些领域的数据对于大模型的针对训练来说已经完全可用。随着闭环的形成,新生成的数据反哺并不断提升模型能力,解决方案也在逐渐跑通。

基础能力,不断提升

一系列技术落地的背后,是创新奇智以工业大模型技术平台为基础的产品体系。

2023 年 4 月,奇智孔明推出了首款生成式 AI 产品 —— 奇智孔明 AInnoGC,它面向制造业为主的垂直类场景,致力于让不同细分行业都拥有基于自身数据的 AI 生成能力。

今年 3 月,作为其基础的工业大模型 AInno 升级至 2.0 版本,达到 750 亿参数,性能获得了大幅升级。AInno-75B 增加了多模态处理能力,支持输入文本、图像、视频以及工业场景中的行为(Action)模态,如 CAD 等。

图片

通过引入高参数量大模型 AInno-75B, 创新奇智的主推产品 ChatDoc、ChatBI 获得了显著的能力提升。

生成式企业私域知识问答应用 ChatDoc 进一步丰富了多知识库、多文件类型、多内容格式的知识问答能力。ChatDoc 在知识库领域完成了一系列创新。通过「片段切分合并」的方式,在人机交流的过程中,知识点的相关性经由大模型技术进行判断,避免了横跨领域时返回内容不完整,整体问答效果提升 28.8%。

现在,ChatDoc 支持了直接对扫描版 PDF 文档的识别和问答,可以自动扫描 PDF 文件,并将其中信息直接纳入到知识库当中。

与此同时,创新奇智重点优化了全流程数据计算效率和服务吞吐能力,显著提升了大量文件情境下的问答效果、效率和用户体验。

生成式企业私域数据分析应用 ChatBI 则针对客户需求优化了产品体验,支持用户的全流程可介入、可编辑、可确认,确保数据分析结果可靠、可信。同时该工具进一步优化了 Text-To-SQL、Text-To-Chart 的效果和展示形式,降低了数据分析门槛,并提升了数据分析效率。

在实际的工作流程中,ChatBI 被定位为助手(Copilot)级应用。创新奇智 CTO 张发恩表示:「它不是 100% 的 BI 系统,而是作为辅助企业内 BI 报表工作人员的角色,可以帮助人们提升效率。在 AI 的帮助下,很多原来需要写代码的工作流程,现在只需要以对话的方式就可以实现了。」

此外,在大模型的推理效率上,创新奇智通过高效的搜索引擎和 4 比特量化技术大幅降低计算资源需求,实现了 75B 大模型的双卡可推理,满足了大量企业级应用场景的需求。针对众多企业大模型私有化部署的需求,创新奇智还与合作方共同构建了基于国产算力的一体机。

创新奇智还升级、发布了生成式企业私域视觉洞察应用 ChatVision、生成式辅助工业设计应用 ChatCAD、工业机器人任务编排应用 ChatRobot Pro 等一系列能力。

切入工业机器人,探索端到端方向

说到工业机器人,创新奇智在这个方向上正进行着最前沿的探索。

ChatGPT 等大语言模型的发展,正在为机器人领域掀起一场革命,有最先进的大语言模型加持,机器人终于拥有了一颗聪明的大脑。

今年初,斯坦福大学的「炒菜机器人」ALOHA 问世,引发了一片关注。利用新一代技术,机器人似乎已经可以胜任全职管家了。

图片

在斯坦福的工作中,研究者开发了一套系统,用于机器人模仿学习需要全身控制的双臂移动操作任务。它通过一个全身远程操作界面进行有监督的行为克隆收集数据,并在此基础上让机器人进行训练。当面对不同形态的物体时,机器人依然能根据之前的训练数据完成诸如刷碗等基本动作,实现了一定程度的自动化和适应性。

创新奇智正在构建的 ChatRobot Pro 生成式工业机器人调度应用,也使用了相同的思路。在去年基于大模型智能体实现高层次调度编排的基础上,新版本的 ChatRobot Pro 结合了多模态、端到端的 VLA(Vision-Language-Action)策略模型,持续优化了工业大模型的感知、理解、规划、决策能力,大幅提升了机器人操作的任务泛化性和交互友好性

ChatRobot Pro 的核心是端到端的 VLA 策略模型,它可以接受图像输入并配合语言指令进行下一步动作的预测。与以 token 形式输出文本内容的大语言模型不同,在 VLA 模型中,算法需要实时处理视觉环境中的动作,快速准确地面对外界做出连续的动作反应。创新奇智的机器人可以保持一秒钟 30Hz 的动作刷新率,确保了行动连贯流畅。

VLA 大模型是一种能够在视觉、语言及动作之间建立联系的强大工具,它可以接收来自多个传感器的数据(例如三个摄像头图像),解读复杂的任务指令,并输出相应的动作,指导机器人执行精确的操作,如调整物体位置等。与传统的机器人相比,VLA 具有更强的理解能力、学习能力和响应速度,适用于需要实时处理复杂情境的任务场景,如工业生产中的质量检测、产品组装等。

在这里,系统采用了云边端协同架构,其中机器人旁的端侧算力负责本地部分数据处理,端侧 VLA 算法进行最终决策,以支持机器人在复杂环境下的自主决策和高效执行。

我们在实验室里看到了 ChatRobot Pro 早期形态的演示。仅通过上百次人类操作的「指导」,收集数据加训练时长不到一个月,实验室里的机器人就已经学会拿起扫帚打扫碎屑:图片

它也可以识别杯中小球,并将其倒入空杯子:图片

实现自主学习与行为模仿,标志着机器人在柔韧性和泛化能力上出现了重大突破。未来,我们或许不再需要依赖僵化的编程指令,只需通过接收大量真实操作数据训练视觉大模型,就能让机器人在实际环境中完成更加灵活多样且高效的任务。

这不由得让人想起自动驾驶领域中,基于视觉大模型的端到端方法正在实现的革命。端到端的自动驾驶很快就要上路了,我们可以期待机器人领域也会发生同样的事。

不过相比之下,自动驾驶拥有大量现成可用的数据集。为了更好地发展视觉模型驱动的机器人,创新奇智正在构建 Robot 数据集,其中包含丰富的视角数据,如各类动作的全部轨迹信息。工程人员还在不断整合各类开源数据,力求将其打造成为一个领先的工业领域大规模数据集。

随着端到端大模型技术的提升,复杂任务规划与执行算法的发展,新一代机器人或许可以解决工业领域中的一系列手动、劳动问题,尤其是那些无法通过传统自动化技术解决的任务,比如手机装配中的精细操作环节。

拥抱 AI2.0

最新发布的财报显示,创新奇智在技术和产品创新方面保持着高投入:近年来研发支出占营收的比例均保持 25% 以上。从大模型技术落地,再到端到端视觉模型驱动的机器人,创新奇智的一切努力,都是为了冲击 AI 2.0。

如果将 2018-2022 年定义为 AI 的 1.0 时代,这一代的人工智能以卷积神经网络为基础,其表现为能听能看,可以进行判断识别等任务。过去的几年里,人工智能已经带动了很多行业的自动化变革,但在其中,真正的智慧还没有出现。

大模型技术正在将 AI 推动到 2.0 时代,它克服了上一代 AI 单领域、多模型的限制。利用海量数据训练的,具有跨领域知识的基础模型(Foundation Model)能够完成多模态的复杂任务,更能通过微调等方式快速适配专业领域任务,真正能够实现平台化效应。

可以说,在 AI 1.0 的时代,工业视觉的加持让机器睁开了双眼,到了 AI 2.0 时代,机器人的大脑不再需要人类将所有动作编程,每一个 Action 都将是由大模型来驱动的。

我们正在见证「AI + 制造」大方向,新趋势的出现。

相关资讯

看视频、画CAD、运动想像识别!75B的多模态工业大模型太能干了

今年升级的重点在于引入了多模态大模型能力。当 Sora 和 Suno 所创造的视频和音乐作品在全球范围内引起视听革命时,工业领域的大规模多模态应用又将如何演进?3 月 27 日,作为中国领先的「AI 制造」解决方案提供商,创新奇智揭开了他们的前瞻性答案。经过半年努力,创新奇智在北京举办的发布会上发布了更为强大的奇智孔明工业大模型 2.0 版本( AInno-75B ),几款大模型原生应用也首次亮相,包括 ChatVision 、ChatCAD,ChatRobot 也升级到 Pro 版本 。