新PyTorch API:几行代码实现不同注意力变体,兼具FlashAttention性能和PyTorch灵活性

用 FlexAttention 尝试一种新的注意力模式。理论上,注意力机制就是你所需要的一切。然而在实际操作中,我们还需要优化像 FlashAttention 这样的注意力机制的实现。尽管这些融合的注意力机制大大提高了性能,且支持长上下文,但这种效率的提升也伴随着灵活性的丧失。对于机器学习研究人员来说,这就像是一种「软件彩票」—— 如果你的注意力变体不适合现有的优化内核,你将面临运行缓慢和 CUDA 内存不足的困境。 一些注意力变体包括因果注意力、相对位置嵌入、Alibi、滑动窗口注意力、PrefixLM、文档掩码

用 FlexAttention 尝试一种新的注意力模式。

理论上,注意力机制就是你所需要的一切。然而在实际操作中,我们还需要优化像 FlashAttention 这样的注意力机制的实现。

尽管这些融合的注意力机制大大提高了性能,且支持长上下文,但这种效率的提升也伴随着灵活性的丧失。对于机器学习研究人员来说,这就像是一种「软件彩票」—— 如果你的注意力变体不适合现有的优化内核,你将面临运行缓慢和 CUDA 内存不足的困境。 

一些注意力变体包括因果注意力、相对位置嵌入、Alibi、滑动窗口注意力、PrefixLM、文档掩码、不规则张量、PagedAttention 等。更糟糕的是,人们通常希望将这些变体组合在一起!比如滑动窗口注意力 + 文档掩码 + 因果注意力 + 上下文并行,又比如 PagedAttention + 滑动窗口的组合。

下图左侧代表了当今的现状 —— 一些掩码 + 偏置 + 设置的组合已经有现成的内核实现。然而,各种选项的添加会导致设置呈指数级增长。更糟糕的是,这种方式不会支持新的注意力变体。 

图片

为了彻底地解决这个超立方体问题,PyTorch 团队引入了 FlexAttention,一个新的 PyTorch API。

FlexAttention 是一个灵活的 API,允许用户使用几行惯用的 PyTorch 代码就能实现多个注意力变体。

团队人员通过 torch.compile 将其降低到一个融合的 FlashAttention 内核中 ,生成了一个不会占用额外内存且性能可与手写内核相媲美的 FlashAttention 内核。

利用 PyTorch 的自动求导机制自动生成反向传播。

最后,PyTorch 团队还可以利用注意力掩码中的稀疏性,从而显著改善标准注意力实现。

图片

FlashAttention 1-3 版本的参与者 Tri Dao 对这项研究进行了转发并评论:这项研究使得很多技术都融合在一起了。

图片

FlexAttention

经典的注意力方程式如下:

图片

代码形式:

图片

FlexAttention 形式如下,其通过接受用户定义的函数 score_mod 来解决上述问题。

图片代码形式:

图片

此函数允许用户在 softmax 之前修改注意力分数。研究人员发现,该函数最终足以满足大多数用户对注意力变体的需求。

具体而言,score_mod 如下:

图片

要应用此函数,可以将其实现为:

for b in range (batch_size):
    for h in range (num_heads):
        for q_idx in range (sequence_length):
            for kv_idx in range (sequence_length):
                modified_scores [b, h, q_idx, kv_idx] = score_mod (scores [b, h, q_idx, kv_idx], b, h, q_idx, kv_idx)

最终的 API 具有令人惊讶的表达能力。

Score Mod 示例

全注意力

在这种情况下,score_mod 无操作,它接受分数作为输入,然后原样返回它们。

图片

然后端到端的使用。

图片

相对位置编码

一种常见的注意力变体是相对位置编码。相对位置编码不是对查询和键中的绝对距离进行编码,而是根据查询和键之间的距离调整分数。

图片

需要注意的是,与典型实现不同,这不需要具体化 SxS 张量。相反,FlexAttention 会在内核中动态计算偏差值,从而显著提高内存和性能。

图片

Soft-capping

Soft-capping 是 Gemma 2 和 Grok-1 使用的一种技术,在 FlexAttention 中,它的形式是这样的:

图片

Causal Mask

尽管双向注意力很简单,但在论文《Attention is All You Need》,以及其他的 LLM 中,它们的设置都是仅解码器的注意力,其中每个 token 只能关注它之前的 token。如果用户使用 score_mod API ,可以将其表示为:

图片

Sliding Window + Causal

图片

                                           图源:https://arxiv.org/abs/2310.06825

Mistral 一直在推广滑动窗口注意力(也称为局部注意力),它允许查询 token 仅关注最近的 1024 个 token,通常与因果注意力一起使用。

图片

研究者对带有滑动窗口掩码的 F.scaled_dot_product_attention 以及带有因果掩码的 FA2 进行基准测试。结果表明,FlexAttention 不仅明显快于 F.scaled_dot_product_attention,也明显快于带有因果掩码的 FA2。

图片

性能

总体而言,FlexAttention 的性能几乎与手写的 Triton 内核一样好。然而,由于 FlexAttention 具有通用性,因此会遭受轻微的性能损失。例如,用户必须承受一些额外的延迟。

FlexAttention 在前向传播中实现了 FlashAttention2 性能的 90%,在反向传播中实现了 85%。FlexAttention 目前正在使用一种确定性算法,该算法比 FAv2 重新计算了更多的中间体,研究者计划改进 FlexAttention 的反向算法,来缩小这一差距!

图片

图片

参考链接:https://pytorch.org/blog/flexattention/

相关资讯

比标准Attention提速5-9倍,大模型都在用的FlashAttention v2来了

一年时间,斯坦福大学提出的新型 Attention 算法 ——FlashAttention 完成了进化。这次在算法、并行化和工作分区等方面都有了显著改进,对大模型的适用性也更强了。

英伟达又赚到了!FlashAttention3来了:H100利用率飙升至75%

740 TFLOPS!迄今最强 FlashAttention 来了。随着大型语言模型(LLM)加速落地,扩展模型上下文窗口变得越来越重要。然而,Transformer 架构的核心 —— 注意力层的时间复杂度和空间复杂度与输入序列长度的平方成正比。这使得扩展模型上下文窗口存在挑战。2022 年,一种快速、内存高效的注意力算法 ——FlashAttention 问世,该算法无需任何近似即可加速注意力并减少内存占用。FlashAttention 对注意力计算进行重新排序的算法,并利用 tiling 和重计算来显著加快计算

纯PyTorch语音工具包SpeechBrain开源,Kaldi:我压力有点大

距离 Mirco Ravanelli 宣布打造新的语音工具包过去了一年多,SpeechBrain 真的如期而至。