吸附

预测精度高达0.98,清华、深势科技等提出基于Transformer的MOF材料多功能预测框架

编辑 | X气体分离对于工业生产和环境保护至关重要,金属有机框架(MOF)由于其独特的性能而成为气体分离领域一种有前途的材料。传统的模拟方法,如分子动力学,复杂且计算量要求高。虽然基于特征工程的机器学习方法表现更好,但由于标记数据有限,很容易出现过度拟合。此外,这些方法通常是针对单一任务而设计的。为了应对这些挑战,由清华大学、加州大学、中山大学、苏州大学、深势科技和北京科学智能研究院(AI for Science Institute,Beijing,AISI) 组成的多机构团队,合作提出了 Uni-MOF,一种用于

各种尺寸、形状都适用,图卷积神经网络探索金属纳米粒子的电化学稳定性

编辑 | 绿萝表面普尔贝图(Pourbaix diagram),也称电位-pH 图,对于了解纳米材料的电化学稳定性至关重要。然而,其基于密度泛函理论的构建对于真实规模的系统(例如几个纳米级纳米粒子)来说过于昂贵。在此,为了加速吸附能的准确预测,来自韩国科学技术院 (KAIST)和韩国科学技术研究院(KIST)的研究团队开发了一种键型嵌入式晶体图卷积神经网络(Bond-type Embedded Crystal Graph Convolutional Neural Network,BE-CGCNN)模型,该模型对四种
  • 1