TEFDTA
药物-靶标亲和力预测,上科大团队开发了一种Transformer编码器和指纹图谱相结合的方法
编辑 | 萝卜皮药物与靶标之间的结合亲和力的预测对于药物发现至关重要。然而,现有方法的准确性仍需提高。另一方面,大多数深度学习方法只关注非共价(非键合)结合分子系统的预测,而忽略了在药物开发领域越来越受到关注的共价结合的情况。上海科技大学的研究团队提出了一种新的基于注意力的模型,称为 TEFDTA (Transformer Encoder and Fingerprint combined Prediction method for Drug-Target Affinity),来预测键合和非键合药物-靶标相互作用的结
1/24/2024 6:53:00 PM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
Gemini
马斯克
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
特斯拉
场景
AI模型
深度学习
亚马逊
架构
Transformer
MCP
编程
视觉
预测