SANGO
平均准确率达96.4%,中山大学&重庆大学开发基于Transformer的单细胞注释方法
编辑 | 萝卜皮使用测序 (scATAC-seq) 技术对转座酶可及的染色质进行单细胞测定,可在单细胞分辨率下深入了解基因调控和表观遗传异质性,但由于数据的高维性和极度稀疏性,scATAC-seq 的细胞注释仍然具有挑战性。现有的细胞注释方法大多集中在细胞峰矩阵上,而没有充分利用底层的基因组序列。在这里,中山大学与重庆大学的研究人员提出了一种方法 SANGO,通过在 scATAC 数据中的可及性峰周围整合基因组序列来进行准确的单细胞注释。SANGO 在跨样本、平台和组织的 55 个配对 scATAC-seq 数据集
4/29/2024 10:17:00 AM
ScienceAI
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
Gemini
马斯克
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
特斯拉
场景
AI模型
深度学习
亚马逊
架构
Transformer
MCP
编程
视觉
预测