MEHnet
麻省理工Nature子刊:AI加速量子化学计算,精度媲美「金标准」,计算效率提升百万倍!
编辑 | 2049在量子化学计算中,精确预测分子电子结构一直是一个重要而富有挑战性的课题。 传统的密度泛函理论(DFT)方法虽然计算速度快,但精度有限;而高精度的耦合簇(CCSD(T))方法虽然被视为「金标准」,但其计算成本随分子大小呈指数级增长,难以应用于复杂体系。 最近,麻省理工学院的研究团队开发出一种创新的多任务学习方法,成功将机器学习与量子化学计算相结合,实现了接近CCSD(T)精度的分子电子结构预测。
1/10/2025 2:15:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AI
OpenAI
AIGC
模型
ChatGPT
DeepSeek
AI绘画
谷歌
数据
机器人
大模型
Midjourney
用户
开源
智能
Meta
微软
GPT
学习
图像
技术
Gemini
AI创作
马斯克
论文
Anthropic
代码
英伟达
算法
Stable Diffusion
智能体
训练
芯片
开发者
蛋白质
生成式
腾讯
苹果
AI新词
神经网络
3D
Claude
LLM
研究
生成
机器学习
计算
AI for Science
Sora
人形机器人
AI视频
xAI
AI设计
GPU
华为
百度
搜索
大语言模型
Agent
场景
字节跳动
预测
大型语言模型
深度学习
伟达
工具
Transformer
视觉
RAG
具身智能
神器推荐
亚马逊
Copilot
模态
AGI
LLaMA
文本
算力
驾驶