IMPALA

从框架到经典方法,全面了解分布式深度强化学习DDRL

本文在回顾分布式深度强化学习 DDRL 基本框架的基础上,重点介绍了 IMPALA 框架系列方法。AlphaGo 是一个在人机博弈中赢得众多职业围棋手的 agent 机器人。随着 AlphaGo 的突破,深度强化学习(Deep Reinforcement Learning,DRL)成为一种公认的解决连续决策问题的有效技术。人们开发了大量算法来解决介于 DRL 与现实世界应用之间的挑战性问题,如探索与开发困境、数据低效、多 agent 合作与竞争等。在所有这些挑战中,由于 DRL 的试错学习机制需要大量交互数据,数据
  • 1