AI在线 AI在线

幻觉率

AAAI2025 | ICLR 2025爆款!CHiP创新引入视觉偏好,幻觉率腰斩

一眼概览CHiP 提出了一种跨模态分层偏好优化方法,通过视觉与文本偏好双重引导,显著提升多模态大模型(MLLMs)在幻觉检测任务中的表现,最高减少55.5%的幻觉率。 核心问题多模态大模型(如GPT-4V、LLaVA)虽具强大能力,但常产生“幻觉”——即图文语义不一致、生成不符合图像内容的描述。 现有DPO方法仅基于文本偏好,难以有效对齐图像和文本的表示,也无法细粒度定位幻觉段落,限制了模型可信度与实用性。
4/28/2025 12:28:27 PM
萍哥学AI
  • 1