Critique-in-the-Loop
Scaling Law 撞墙?复旦团队大模型推理新思路:Two-Player架构打破自我反思瓶颈
在 AI 领域,近期的新闻焦点无疑是关于「Scaling Law 是否撞墙?」的辩论。这一曾经被视作大模型发展的第一性原理,如今却遭遇了挑战。在这样的背景下,研究人员开始意识到,与其单纯堆砌更多的训练算力和数据资源,不如让模型「花更多时间思考」。以 OpenAI 推出的 o1 模型为例,通过增加推理时间,这种方法让模型能够进行反思、批评、回溯和纠正,大幅提升了推理表现
11/27/2024 6:10:00 PM
机器之心
资讯热榜
标签云
AI
人工智能
OpenAI
AIGC
模型
ChatGPT
谷歌
DeepSeek
AI绘画
大模型
机器人
数据
AI新词
Midjourney
开源
Meta
微软
智能
用户
GPT
学习
技术
智能体
Gemini
马斯克
Anthropic
英伟达
图像
AI创作
训练
LLM
论文
代码
算法
苹果
AI for Science
Agent
Claude
腾讯
芯片
Stable Diffusion
蛋白质
具身智能
开发者
xAI
生成式
神经网络
机器学习
人形机器人
3D
AI视频
RAG
大语言模型
研究
百度
Sora
生成
GPU
工具
华为
字节跳动
计算
AGI
大型语言模型
AI设计
搜索
生成式AI
视频生成
DeepMind
特斯拉
场景
AI模型
深度学习
亚马逊
架构
Transformer
MCP
编程
视觉
预测