资讯列表

国产工业软件弯道超车迎曙光,首款云原生CAD取得重大突破

《道德经》有云,道生一,一生二,二生三 ,三生万物。“三”往往引向无穷之数。三维家耕耘8年的科技实力即将迎来全面丰收,由此,“三体计划”横空出世。“三体计划”既包含三维家结盟三个世界顶尖技术伙伴的合作成果、在三个前沿学科的不懈探索、以及在三大科技盛会上的实力展现,也代表三维家坚持对先进技术的探索,用技术为产业开拓无限想象空间。“三体计划”最终导向三大目标:降维打击、打破边界、重塑视界。10月10日首款云原生CAD的发布开启了“三体计划”的第一篇章。2021年10月9日-10日,“智能制造和智能化管理”交流会议暨安徽

海内外71支劲旅角逐青光眼AI,视杯盘分割任务体素科技团队斩获第一

MICCAI(Medical Image Computing and Computer Assisted Intervention)始于1998年的麻省理工学院,意在探索医学影像、计算机辅助介入以及两者融合的价值。20逾年的发展,MICCAI已成为医学影像分析行业的顶级学术会议。百度组织的眼科医学影像分析研讨会OMIA (Ophthalmic Medical Image Analysis)是眼科影像领域的重点研讨会之一,至今已举办八届。2021MICCAI之上,OMIA将议点聚焦于青光眼之上,举办了GAMMA挑战赛

阿里数据中台底座的12年建设实践

文/阿里云智能计算平台事业部研究员 关涛阿里巴巴数据平台发展的四大阶段构建数据中台,一个强大的数据平台作为底座必不可少。 阿里巴巴数据平台发展的四个阶段,一定程度上其实也是阿里巴巴数据中台发展的四个阶段。这四个阶段里,你可以看到阿里巴巴对自身数据的商业价值的萃取,对原有分而治之的数据系统的聚合,对计算数据资产化和数据高效应用的新思路以及对数据平台治理过程中面临的组织变革等。阶段一:业务百花齐放,发现数据价值2009年到2012年,阿里巴巴电商业务进入爆发期,涌现出非常多有名的业务团队,比如淘宝、1688、AliEx

DataWorks赋能企业一站式数据开发治理能力

简介: 企业大数据技术发展至今,历经了两次蜕变。第一次蜕变从最初的“小作坊”解决大数据问题,到后来企业用各类大数据技术搭建起属于自己的“大平台”,通过平台化的能力完成数据生产力的升级。 第二次蜕变让大数据从“大平台”向“敏捷制造”的开发范式演进。在2021阿里云峰会上,阿里巴巴集团副总裁、阿里云智能计算平台事业部高级研究员贾扬清发布基于DataWorks的一站式大数据开发治理的平台,就是这个蜕变最好的佐证。

PyFlink 开发环境利器:Zeppelin Notebook

也许你早就听说过 Zeppelin,但是之前的文章都偏重讲述如何在 Zeppelin 里开发 Flink SQL,今天则来介绍下如何在 Zeppelin 里高效的开发 PyFlink Job,特别是解决 PyFlink 的环境问题。一句来总结这篇文章的主题,就是在 Zeppelin notebook 里利用 Conda 来创建 Python env 自动部署到 Yarn 集群中,你无需手动在集群上去安装任何 PyFlink 的包,并且你可以在一个 Yarn 集群里同时使用互相隔离的多个版本的 PyFlink。最后你

学术顶会再突破!计算平台MaxCompute论文入选国际顶会VLDB 2021

一、顶会概览 VLDB 2021上,阿里云计算平台MaxCompute参与的论文入选,核心分布式调度执行引擎Fangorn、基于TVR Cost模型的通用增量计算优化器框架Tempura等分别被Industry Track、Research Track录取。 作为数据管理与数据库领域三大顶级学术会议之一,VLDB每年都吸引了各大高校、科研机构与科技公司的论文投稿,许多重要技术成果都在VLDB上中选发布。 多篇研究成果的发布离不开25位计算平台布道师和达摩院布道师花费大量时间撰写和修改,布道师们通过撰写论文和参加学术

工业环境中对机器学习的行业视角

编辑/凯霞Google Applied Science 是 Google Research 的一个部门,将计算方法,尤其是机器学习,应用于广泛的科学问题。不久前帕特里克·莱利(Patrick Riley)还是该部门软件工程师之一,现在是 Relay Therapeutics 的人工智能负责人,他与《Nature Reviews Materials》谈论了他在工业环境中从事机器学习项目的经验。你能告诉我们一些关于你所做的事情以及谷歌机器学习研究的事情吗?我在 Google Applied Science () 的小组

相信AI的力量——「AI中国」机器之心 2021年度评选奖项设置及参选说明

在一年之末,机器之心将启动「AI中国」机器之心2021年度评选暨「与AI俱进,化时光为翎」特别策划,除了2021年度榜单之外还将分阶段推出一档年度内容专题、一份年度报告,并举办首届机器之心AI科技年会。

2021入坑机器学习,有这份指南就够了

这是一份适用于小白的机器学习超丰富资源指南。机器学习社区社交媒体上经常有人提出这样的问题:我如何开始机器学习?我如何免费学习?什么是人工智能?我怎样才能学会它?人工智能是如何工作的?我该从何学起?如果我没有开发人员背景,该如何开始?......面对这些问题,油管博主 What's AI——Louis Bouchard 撰写了一份关于「如何在 2021 年零基础开始机器学习」的完整指南,整合了大量学习资源,而且大部分是免费的。项目地址: 1.6K star 量,并且仍在持续更新中。我们来看一下这份指南的具体内容。1.

晚上就应该睡觉?新的机器学习技术探索昼夜节律

编辑 | 雪松昼夜节律,如睡眠-觉醒周期,是大多数生物与生俱来的,对地球上的生命至关重要。昼夜时钟在 24 小时日夜周期中协调生物的各项生理变化,会间接影响我们人类的体能水平、健康程度、生存能力。同样,将新陈代谢与日出落日同步等情况也存在于植物中,准确的生物钟有助于调节开花。了解昼夜节律,于植物而言,有助于提高植物的生长和产量;于人类而言,则有可能揭示出治疗疾病的新途径。IBM欧洲研究所与厄尔汉姆研究所的合作团队,描述了一系列基于人工智能(AI)和机器学习(ML)的方法。这些方法可以进行更具成本效益的分析并深入了解

曝光!阿里50余位工程师私藏的学习资源清单

学习是⼀个不断精进的过程,没有 standard destination。我们经常听到技术人各种学习困扰:●「AI 领域发展太快了,感觉囤积的学习资源好容易过时。」●「网上资料和课程太多了,不知道怎么筛选出适合自己的经典资料。」●「想知道阿里 p7p8 同学的技术成长路线,都有哪些精进方式?」工欲善其事,必先利其器。⼀份高质量的学习资源是每位技术同学的成长必需品。通常来说,只有当学习资源 catch 到我们知识盲点的时候才能勾起我们的兴趣,此外,相关领域的前辈根据自身经验的推荐,是不错的筛选标准。基于此,来自阿里淘

Jupyter笔记本实现,慕尼黑工大220页免费书籍介绍基于物理的深度学习

物理知识和深度学习已经成为了解决现实问题的绝佳组合,但如何更有效地将物理模型引入深度学习领域缺少一个全面的综述。慕尼黑工业大学计算机科学副教授 Nils Thuerey 团队编写的这本书籍对基于物理的深度学习展开了详尽的介绍。书籍地址:::,《基于物理的深度学习》(Physics-based Deep Learning)介绍了物理建模、数值模拟与基于人工神经网络方法的结合。基于物理的深度学习代表了一个非常活跃、快速发展和令人兴奋的研究领域。就内容而言,本书对物理模拟背景下与深度学习相关的所有内容展开了非常全面的介绍

DeepMind联合UCL,推出2021强化学习最新课程

DeepMind 的研究科学家和工程师亲自讲授了一套强化学习课程,目前已全部上线。DeepMind 作为全球顶级 AI 研究机构,自 2010 年创建以来已有多项世界瞩目的研究成果,例如击败世界顶级围棋玩家的 AlphaGo 和今年高效预测的蛋白质结构的 AlphaFold。近几年,DeepMind 联合伦敦大学学院(UCL)推出了一些人工智能线上课程,今年他们联合推出的「2021 强化学习系列课程」现已全部上线。该课程由 DeepMind 的研究科学家和工程师亲自讲授,旨在为学生提供对现代强化学习的全面介绍。课程

支持异构图、集成GraphGym,超好用的图神经网络库PyG更新2.0版本

当前最流行和广泛使用的 GNN 库 PyG(PyTorch Geometric)现在出 2.0 版本了,新版本提供了全面的异构图支持、GraphGam 以及很多其他特性,这一系列改进,为使用者带来了更好的用户体验。

一块V100运行上千个智能体、数千个环境,这个「曲率引擎」框架实现RL百倍提速

在强化学习研究中,一个实验就要跑数天或数周,有没有更快的方法?近日,来自 SalesForce 的研究者提出了一种名为 WarpDrive(曲率引擎)的开源框架,它可以在一个 V100 GPU 上并行运行、训练数千个强化学习环境和上千个智能体。实验结果表明,与 CPU+GPU 的 RL 实现相比,WarpDrive 靠一个 GPU 实现的 RL 要快几个数量级。

揭开深度强化学习的神秘面纱

编辑 | 萝卜皮深度强化学习是人工智能最有趣的分支之一。它是人工智能社区许多显着成就的基石,它在棋盘、视频游戏、自动驾驶、机器人硬件设计等领域击败了人类冠军。深度强化学习利用深度神经网络的学习能力,可以解决对于经典强化学习(RL)技术来说过于复杂的问题。深度强化学习比机器学习的其他分支要复杂得多。在这篇文章中,我们将尝试在不涉及技术细节的情况下,揭开它的神秘面纱。状态、奖励和行动每个强化学习问题的核心都是代理和环境。环境提供有关系统状态的信息。代理观察这些状态并通过采取行动与环境交互。动作可以是离散的(例如,拨动开

特斯拉8月在华销量首破4万台,或已达产能极限

根据乘联会销量数据显示,8月特斯拉批售量达到44264辆,环比增长34%,同比增长275%。截至8月,特斯拉2021年全球累计销售超过25万辆,国内销售约15万辆,超越去年全年总和。此外,特斯拉出口量也在持续攀升,自特斯拉7月底宣布将上海超级工厂转型为主要的汽车出口中心后,当月出口量就已突破2万辆,8月又增长至31379辆,环比提升29%。据特斯拉CEO埃隆·马斯克此前在推特透露,特斯拉上半季度生产的汽车主要用于出口,下半季度则面向国内市场。目前,特斯拉上海超级工厂年产能规划超过45万辆,月度产能规划预计在4万左右

在理解通用近似定理之前,你可能都不会理解神经网络

通用近似定理很好地解释了为什么神经网络能工作以及为什么它们经常不起作用。