应用
春节大礼包!OpenAI首个视频生成模型发布,60秒高清大作,网友已叹服
欢迎来到 bling zoo!北京时间今天凌晨,OpenAI 正式发布了文本到视频生成模型 Sora,继 Runway、Pika、谷歌和 Meta 之后,OpenAI 终于加入视频生成领域的战争。山姆・奥特曼的消息放出后,看到 OpenAI 工程师第一时间展示的 AI 生成视频效果,人们纷纷表示感叹:好莱坞的时代结束了?OpenAI 声称,如果给定一段简短或详细的描述或一张静态图片,Sora 就能生成类似电影的 1080p 场景,其中包含多个角色、不同类型的动作和背景细节。Sora 有哪些特别之处呢?它对语言有着深
谷歌Gemini1.5火速上线:MoE架构,100万上下文
今天,谷歌宣布推出 Gemini 1.5。Gemini 1.5 建立在谷歌基础模型开发和基础设施的研究与工程创新的基础上,包括通过新的专家混合 (MoE) 架构使 Gemini 1.5 的训练和服务更加高效。谷歌现在推出的是用于早期测试的 Gemini 1.5 的第一个版本 ——Gemini 1.5 Pro。它是一种中型多模态模型,针对多种任务的扩展进行了优化,其性能水平与谷歌迄今为止最大的模型 1.0 Ultra 类似,并引入了长上下文理解方面的突破性实验特征。Gemini 1.5 Pro 配备了 128000
我在模拟世界!OpenAI刚刚公布Sora技术细节:是数据驱动物理引擎
机器之心报道机器之心编辑部先安排好演员,再让他们来演绎。今天,我们都在感受 Sora 的带来的魅力。OpenAI 的首个视频生成模型 Sora,让「一句话生成视频」的前沿 AI 技术向上突破了一大截,引发了业界对于生成式 AI 技术方向的大讨论。Sora 生成的视频范例。提示词:「两艘海盗船在一个咖啡杯中航行、互相战斗的逼真特写视频。」来源:,我们已经见证过许多创业公司提出的视频生成模型。相比之下,OpenAI 提出的新模型不论是效果还是理念上,似乎都具有划时代的意义。有人第一时间总结道,Sora 不是一个简单的视
我们还需要Transformer中的注意力吗?
状态空间模型正在兴起,注意力是否已到尽头?最近几周,AI 社区有一个热门话题:用无注意力架构来实现语言建模。简要来说,就是机器学习社区有一个长期研究方向终于取得了实质性的进展,催生出 Mamba 两个强大的新模型:Mamba 和 StripedHyena。它们在很多方面都能比肩人们熟知的强大模型,如 Llama 2 和 Mistral 7B。这个研究方向就是无注意力架构,现在也正有越来越多的研究者和开发者开始更严肃地看待它。近日,机器学习科学家 Nathan Lambert 发布了一篇题为《状态空间 LLM:我们需
RAG还是微调?微软出了一份特定领域大模型应用建设流程指南
检索增强生成(RAG)和微调(Fine-tuning)是提升大语言模型性能的两种常用方法,那么到底哪种方法更好?在建设特定领域的应用时哪种更高效?微软的这篇论文供你选择时进行参考。在构建大语言模型应用程序时通常有两种常见的方法来整合专有和特定领域的数据:检索增强生成和微调。检索增强生成通过外部数据增强提示,而微调将额外的知识整合到模型本身中。不过,对这两种方法的优缺点了解的却不够充分。本文中,来自微软的研究者引入一个新的关注点:为需要特定背景和自适应响应的行业(农业)创建 AI 助手。本文提出了一个全面的大语言模型
语音生成的「智能涌现」:10万小时数据训练,亚马逊祭出10亿参数BASE TTS
伴随着生成式深度学习模型的飞速发展,自然语言处理(NLP)和计算机视觉(CV)已经经历了根本性的转变,从有监督训练的专门模型,转变为只需有限的明确指令就能完成各种任务的通用模型。在语音处理和文本到语音(TTS)领域,这样的转变也正在发生,模型能够利用数千小时的数据,使合成结果越来越接近类人语音。在最近的一项研究中,亚马逊正式推出了 BASE TTS,将 TTS 模型的参数规模提升到了前所未有的 10 亿级别。论文标题:BASE TTS: Lessons from building a billion-paramet
生成速度快SDXL一倍,9GB GPU也能运行,Stable Cascade来搞性价比了
硬件要求越来越低,生成速度越来越快。Stability AI 作为文本到图像的「元老」,不仅在引领该领域的潮流方向,也在模型质量上一次次进行新的突破,这次是性价比的突破。就在前几天,Stability AI 又有新动作了:Stable Cascade 的研究预览版被推出。这款文本到图像模型进行了创新,它引入了一个三阶段方法,为质量、灵活性、微调和效率设定了新的基准,重点是进一步消除硬件障碍。此外,Stability AI 发布了训练和推理代码,允许进一步自定义模型及其输出。该模型可在 diffusers 库中进行推
陪跑又快又稳,机器人跑步搭子来了
这个机器人名叫Cassie,曾经创下百米跑世界纪录。最近,加州大学伯克利分校的研究者给它开发了一种新的深度强化学习算法,让它掌握了急转弯等技能,还能对抗各种干扰。 【关注机器之心视频号,第一时间看到有趣的 AI 内容】 关于双足机器人运动的研究已经进行了几十年,但仍然没有一个能够对各种运动技能进行稳健控制的通用框架。挑战来自于双足机器人欠驱动动态的复杂性以及与每种
大模型时代还不理解自注意力?这篇文章教你从头写代码实现
自注意力是 LLM 的一大核心组件。对大模型及相关应用开发者来说,理解自注意力非常重要。近日,Ahead of AI 杂志运营者、机器学习和 AI 研究者 Sebastian Raschka 发布了一篇文章,介绍并用代码从头实现了 LLM 中的自注意力、多头注意力、交叉注意力和因果注意力。太长不看版这篇文章将介绍 Transformer 架构以及 GPT-4 和 Llama 等大型语言模型(LLM)中使用的自注意力机制。自注意力等相关机制是 LLM 的核心组件,因此如果想要理解 LLM,就需要理解它们。不仅如此,这
突发!AI大牛Andrej Karpathy离开OpenAI
Andrej Karpathy 又离职了!刚刚,AI大牛Andrej Karpathy官宣了一条重要消息:他昨天已经从OpenAI离职,不过这中间没有什么戏剧性冲突,他只是想去尝试一下自己的个人项目。Karpathy在官宣离职的推文中写道,「是的,我昨天离开了OpenAI。首先,没发生什么特别的事情,这不是由于任何特定事件、问题或者争议导致的(但请继续提供阴谋论,因为它们确实很有趣 :))。实际上,在过去的大约一年时间里,在OpenAI的经历真的很棒——团队非常强大,人们非常棒,路线图也非常令人兴奋,我认为我们都有
英伟达官宣AI聊天机器人,本地RTX显卡运行,这是要挑战OpenAI?
OpenAI 进军芯片领域,英伟达自己造聊天机器人,这是 Sam vs Jensen 的时代?下载地址: AI 淘金热里,英伟达经常被称为那个「卖铲子的人」,而且卖的是难以替代的铲子。依靠这个角色,英伟达市值已经超越亚马逊,成美股第四大公司,离谷歌市值仅一步之遥。但值得注意的是,英伟达本身也在这波 AI 浪潮里淘金。刚刚,他们发布了一个对话机器人 ——「Chat with RTX」,面向 GeForce RTX 30 系列和 40 系列显卡用户(至少有 8GB VRAM)。有人开玩笑说,Sam Altman 进军芯
三年16篇一作,前谷歌研究科学家Yi Tay官宣新模型,21B媲美Gemini Pro、GPT-3.5
该团队的新模型在多个基准测试中都与 Gemini Pro 、GPT-3.5 相媲美。如果你经常读 AI 大模型方向的论文,Yi Tay 想必是一个熟悉的名字。作为前谷歌大脑高级研究科学家,Yi Tay 为许多知名的大型语言模型和多模态模型做出了贡献,包括 PaLM、UL2、Flan-U-PaLM、LaMDA/Bard、ViT-22B、PaLI、MUM 等。根据 Yi Tay 个人资料统计,在谷歌大脑工作的 3 年多的时间里,他总共参与撰写了大约 45 篇论文,是其中 16 篇的一作。一作论文包括 UL2、U-PaL
谷歌工程师2018年内部信曝光,5年前就有人拉响AI警报了
看起来,虽然行动慢了一些,谷歌搜索的地位暂时还无人可以撼动。2023 年 2 月,谷歌 CEO 桑达尔・皮查伊(Sundar・Pichai)对内发布了一份「红色代码」预警,要求谷歌旗下用户超 10 亿的产品尽快接入生成式 AI,以对抗来势汹汹的 ChatGPT。这一举动给人一种谷歌「慌了」的感觉,因为 ChatGPT 的到来已经威胁到了谷歌核心的搜索业务:如果大家都习惯用 ChatGPT 这类 AI 对话引擎直接得到答案,谁还会去谷歌搜索呢?谁还会去谷歌投广告呢?乍看起来,这一切都发生地非常突然,谷歌应对起来也很被
华为盘古大模型变「小」,1.5B也很能打
ChatGPT 等系列模型横空出世,以其强大的性能引起了全球的关注,有望改变人与计算机之间的交互方式,应用到千行百业。然而这些大型模型的实际需要极高的内存和计算资源,限制了它们在各种场景中的应用。例如,具有 175B 参数的 GPT-3 在使用 FP32 数据类型存储时需要大约 700GB 内存。尽管 7B 参数模型相对更高效,但其资源需求仍然难以直接部署在手机等边缘设备上。此外,尽管许多研究已经成功地打造出多个效果很好的大语言模型,但他们往往采用相似的训练策略。一方面,大量工作集中在收集和清理数据上,较少强调研究
LLM是世界模型的新证据?ChatGPT能理解WiFi等物理信号,并猜出你的位置
大语言模型是否是世界模型?大语言模型除了在数字世界完成如写作或翻译等任务,它们能否理解并处理物理世界中的信息并进而完成更广泛的任务呢?最近来自香港科技大学(HKUST)、南洋理工大学(NTU)与加利福尼亚大学洛杉矶分校(UCLA)的研究者们提供了新的思路:他们发现大语言模型如 ChatGPT 可以理解传感器信号进而完成物理世界中的任务。该项目初步成果发表于 ACM HotMobile 2024。论文标题:Penetrative AI: Making LLMs Comprehend the Physical Worl
7万亿美元:OpenAI超大芯片计划曝光,要重塑全球半导体行业
通用人工智能要迎来大结局了?OpenAI 的 CEO 山姆・奥特曼(Sam Altman)引领了近期生成式 AI 的大发展。最近,他又有了一个宏伟目标:重塑全球半导体行业。据《华尔街日报》近日报道,奥特曼正在推动一个旨在提高全球芯片制造能力的项目,并在与包括阿联酋政府在内的不同投资者进行谈判。一位消息人士称,奥特曼可能要为这一计划筹集 5 万亿至 7 万亿美元。OpenAI 发言人表示:「OpenAI 就增加芯片、能源和数据中心的全球基础设施和供应链进行了富有成效的讨论,这对于人工智能和相关行业至关重要。鉴于国家优
ICLR 2024 | 单图三维重建数字虚拟人,浙大&字节提出Real3D-Portrait算法
近期虚拟人方面的应用如同雨后春笋一般涌现出来。你是否在很多 App 中,看到了 AIGC 让单张照片开口说话的能力?尽管已经能够拥有清晰的画质和准确的口型,但现有的单图驱动虚拟人似乎还差了一点:呈现的结果中说话人往往采用和原图中说话人接近的头部姿态,无法像真人一样在画面中自由地运动。这是因为目前采用的技术无法对图片中说话人在 3D 世界中进行建模,因此在大姿态驱动的情况下会出现效果急剧下降的问题。单图 3D 说话人视频合成 (One-shot 3D Talking Face Generation) 可以被视作解决这
谷歌Gemini Ultra 大会员:每月19.99美元
谷歌大模型的新篇章翻开一页 —— 这还只是 Ultra 的 1.0 版。时代变了。北京时间 2 月 8 日晚,随着桑达尔・皮查伊(Sundar Pichai)的一声宣布,谷歌大模型体系全面进入了 Gemini 时代,并带来最新的 Gemini Ultra 模型。距离 Bard 推出还不到一年,谷歌的所有生成式 AI 服务这次实现了改头换面。原来的 Bard 网站已经改为 Gemini: 12 月 Gemini 系列的发布时,谷歌已经预告过能力最强的 Gemini Ultra 大模型。当时推出的 Gemini Pro