曾爆火的 InstantID又有了新玩法:风格化图像生成,已开源

InstantID 原班团队推出了风格迁移的新方法 InstantStyle。风格化图像生成,也常称为风格迁移,其目标是生成与参考图像风格一致的图像。此前基于 diffusion 的方法(比如 LoRA)通常需要批量的同风格数据进行训练,无法迁移到新的风格中,或者基于 inversion(如 StyleAlign),通过将风格图像还原到 latent noise 后,将其前向传播得到的 K、V 用于替换风格图像生成中的 K、V,但这类方法往往由于 inversion 的操作,造成风格退化。最近,InstantID

InstantID 原班团队推出了风格迁移的新方法 InstantStyle。

风格化图像生成,也常称为风格迁移,其目标是生成与参考图像风格一致的图像。此前基于 diffusion 的方法(比如 LoRA)通常需要批量的同风格数据进行训练,无法迁移到新的风格中,或者基于 inversion(如 StyleAlign),通过将风格图像还原到 latent noise 后,将其前向传播得到的 K、V 用于替换风格图像生成中的 K、V,但这类方法往往由于 inversion 的操作,造成风格退化。

最近,InstantID 原班团队推出了风格迁移的新方法 InstantStyle,与人脸 ID 不同,它是一个通用的图像风格注入框架,采用两种简单但非常有效的技术,来实现风格和内容与参考图像的有效分离。

图片

论文:InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation

论文地址:https://huggingface.co/papers/2404.02733

项目主页:https://instantstyle.github.io/

代码链接:https://github.com/InstantStyle/InstantStyle

Demo 地址:https://huggingface.co/spaces/InstantX/InstantStyle

图片

作者在文中花了较大篇幅介绍动机,(1)首先风格是欠定的,没有清晰的标准来定义,它囊括众多元素,比如色彩、氛围、材质、布局等,即使是人工评价,也很难有统一的结论;(2)此前基于 inversion 的方法会造成明显的风格退化,这对部分风格是无法接受的,比如纹理;(3)图像风格的注入,最棘手的问题是如何平衡风格注入强度以及参考图像的内容泄露。

图片

对此,作者团队进行了一系列实验分析,他们发现,IP-Adapter 的问题被其它许多方法都明显夸大了,作者仅通过手动调整图像特征注入的权重,就解决了大部分论文中宣称的内容泄露问题。尽管如此,在一些情况下,IP-Adapter 仍然较难找到一个合适的阈值来平衡。由于目前 Adapter-based 的方法普遍使用 CLIP 提取图像特征,作者通过图像检索的例子确认,在 CLIP 特征空间中,图像和文本的特征是可以相加减的,答案显而易见,为什么不在注入网络之前,显式地减去可能会泄露的内容信息,从而对图像特征进行内容和风格解耦呢?

最后,受到 B-LoRA 方法的启发,作者细致分析了 IP-Adapter 在每一层注入的效果,惊奇地发现存在两个独立的层分别响应风格和空间布局的信息。为此,作者引出了提出的方法。

方法介绍

基于以上的观察和实验,作者提出了 InstantStyle 方法,如图所示,该方法核心包含两个模块:

图片

(1)特征相减:利用 CLIP 空闲的特性,显式地进行特征相减,去除图像特征中内容的信息,减少参考图片内容对生成图片的影响。其中相比于风格的欠定,内容信息往往容易通过文本简单描述,所以可以利用 CLIP 的文本编码器提取内容特征,用于解耦。

(2)仅风格层注入:仅在特定风格层完成特征注入,隐式地实现风格和内容的解耦。作者在 UNet 的 mid block 附近,发现了分别控制风格和空间布局的两个特定层,并发现在某些风格中,空间布局可能也属于风格的一种。

整体而言,InstantStyle 的思路相当简单易懂,仅仅通过几行代码,就缓解了风格迁移中最困扰的内容泄露问题。

实验结果

作者在文中展示了两种策略的生成结果,这两种策略不局限于特定模型,可以分开独立使用,都实现了优异的效果。

特征相减的结果:

图片

仅风格层注入:

图片

图片

和目前领先方法的对比:

图片

基于原图的风格化:

图片

社区玩法

InstantStyle 已经提供了丰富的代码实现,开发者可以直接通过 GitHub 找到,包括文生图、图生图以及 Inpainting。近日还被视频生成项目 AnyV2V 作为推荐的风格化工具。对于社区用户,InstantStyle 还原生就支持了 ComfyUI(该结点作者也是 InstantStyle 的共同作者),用户可以通过更新 IP-Adapter 结点即可快速尝试。

图片

作为 InstantID 作者,又怎么少得了和 InstantID 的联名呢,相比于 InstantID 中仅通过文本来控制生成风格,InstantStyle 无疑可以让风格更加多样。作者团队会在 GitHub 星标到达 1000 后,官方支持人脸的风格化功能。

图片

作者也官方支持了 Huggingface Demo,可以在线试玩。

图片

相关资讯

一张照片,为深度学习巨头们定制人像图片

主题驱动的文本到图像生成,通常需要在多张包含该主题(如人物、风格)的数据集上进行训练,这类方法中的代表工作包括 DreamBooth、Textual Inversion、LoRAs 等,但这类方案因为需要更新整个网络或较长时间的定制化训练,往往无法很有效地兼容社区已有的模型,并无法在真实场景中快速且低成本应用。而目前基于单张图片特征进行嵌入的方法(FaceStudio、PhotoMaker、IP-Adapter),要么需要对文生图模型的全参数训练或 PEFT 微调,影响原本模型的泛化性能,缺乏与社区预训练模型的兼容

小红书开源「InstantID」效果炸裂,被Yann LeCun点赞,迅速蹿上Github热榜

只需一张照片,整个过程无需训练 LoRA 模型,多风格 AI 写真即刻呈现!最近,有一群来自小红书的 95 后神秘团队,自称 InstantX,搞了个大动作 —— 开源「InstantID」项目。InstantID 凭借着高质量的图像生成能力,在开源界掀起了一股热潮:不仅获得了众多技术大佬的点赞,更是在 GitHub 热榜上迅速飙升,成为焦点。这个「出片神器」,让用户只需上传一张照片,就能轻松定制出多种风格的 AI 写真。对,你没看错。如图左侧所示,与之前爆火的妙鸭相机至少需要上传 20 张照片不同的是,Insta