北大开源全新图像压缩感知网络:参数量、推理时间大幅节省,性能显著提升 | 顶刊TPAMI
压缩感知(Compressed Sensing,CS)是一种信号降采样技术,可大幅节省图像获取成本,其核心思想是「无需完整记录图像信息,通过计算即可还原目标图像」。 CS的典型应用包括:降低相机成本:利用廉价设备就能拍摄出高质量图像;加速医疗成像:将核磁共振成像(MRI)时间从40分钟缩短至10分钟内,减少被检查者的不适;探索未知世界,助力科学研究:将「看不见」的事物变为「看得见」,如观测细胞活动…- 975
- 0
精度提升20%,中科院、南京理工AI方法进行光电子能谱高维数据精细解析
编辑丨ScienceAI无监督聚类算法在划分 Nano-ARPES(ARPES:角分辨光电子能谱)空间映射数据集方面表现出强大的能力。 然而,在区分细微的能带差异方面则表现欠佳。 在最新的研究中,中国科学院高能物理研究所的研究团队与南京理工大学的科研人员合作开发了一种多阶段无监督聚类算法(Multi-Stage Clustering Algorithm,MSCA)。- 970
- 0
3DDFA-V3:引领三维人脸重建新纪元
一、引言从二维图像中重建三维人脸是计算机视觉和图形学领域的一项重要任务,它在虚拟现实(VR)、增强现实(AR)、计算机生成图像(CGI)等领域有着广泛的应用。 近年来,随着深度学习技术的不断发展,三维人脸重建技术取得了显著的进步。 本文将对最新提出的3DDFA-V3算法进行详细介绍,展示其如何凭借创新的几何引导策略和面部区域分割技术,实现高精度和高鲁棒性的三维人脸重建。- 970
- 0
RARE: 提升LLM推理准确性和事实完整性的检索增强框架思路浅尝
MCTS & rStar蒙特卡洛树搜索(MCTS)蒙特卡洛树搜索(MCTS)是一种用于解决复杂决策问题的算法,常用于游戏等领域。 它的基本思想是通过构建一棵搜索树并模拟各种可能的行动来估计每个行动的价值。 MCTS的过程可以分为四个主要步骤:选择(Selection):从根节点开始,根据某种策略(如UCT)遍历子节点,直到找到一个叶节点。- 979
- 0
十大必知的人工智能算法
随着人工智能技术(AI)的日益普及,各种算法在推动这一领域的发展中发挥着关键作用。 从预测房价的线性回归到自动驾驶汽车的神经网络,这些算法在背后默默支撑着无数应用的运行。 今天,我们将带您一览这些热门的人工智能算法(线性回归、逻辑回归、决策树、朴素贝叶斯、支持向量机(SVM)、集成学习、K近邻算法、K-means算法、神经网络、强化学习Deep Q-Networks ),探索它们的工作原理、应用…- 973
- 0
终于把 LSTM 算法搞懂了!!!
今天给大家分享一个强大的算法模型,LSTMLSTM(长短期记忆网络)是一种特殊类型的循环神经网络(RNN),它能够有效地解决传统 RNN 在处理长序列时遇到的梯度消失和梯度爆炸问题。 LSTM 的核心思想是通过多个门控机制来控制信息的流动,这些门控机制可以选择性地保留或丢弃输入数据,从而帮助网络捕捉长时间跨度的依赖关系。 LSTM的工作原理LSTM 的核心思想是通过引入记忆单元来存储信息,并使用三…- 975
- 0
人工智能的“记忆”:个人和组织的革命性生产力
随着人工智能的不断发展,一个概念脱颖而出,成为实现个性化体验的关键:记忆(Memory)。 在Madrona与微软人工智能首席执行官Mustafa Suleyman的IA峰会炉边谈话中,他强调记忆不仅是一种功能,而且是一种重塑人工智能与人类互动方式的变革力量。 记忆使人工智能不仅可以结合智商(IQ),还可以结合情商(EQ),从而创造一种更有意义、更像人类的关系。- 976
- 0
NeurIPS 2024 | 数学推理场景下,首个分布外检测研究成果来了
本文将介绍数学推理场景下的首个分布外检测研究成果。 该篇论文已被 NeurIPS 2024 接收,第一作者王一鸣是上海交通大学计算机系的二年级博士生,研究方向为语言模型生成、推理,以及可解释、可信大模型。 该工作由上海交通大学和阿里巴巴通义实验室共同完成。- 991
- 0
审稿人直呼简洁,单点PageRank终极版!人大STOC论文让复杂度优化至「理论最优」
在信息爆炸的互联网时代,应如何根据重要性对搜索得到的网页进行排名并呈现给用户? 这个问题困扰了无数早期的搜索引擎。 破局者来自Google,创始人Sergey Brin和Lawrence Page提出的网页排名算法PageRank为这个难题提供了一个开创性的解决方案:为每个网页都计算了一个重要性得分,即PageRank得分,得分越高表示该网页质量越好,在信息检索时的重要性越高。- 974
- 0
扩散模型=进化算法!生物学大佬用数学揭示本质
扩散模型居然就是生物的进化算法! 这个结论来自「新常春藤」塔夫茨大学(Tufts University)于近日发表的一项研究:论文地址: Levin,博士毕业于哈佛大学,目前担任塔夫茨大学Allen Discovery Center主任。 Michael Levin长期从事生物电、人工生命和许多其他生物学相关主题的研究,曾在NeurIPS 2018上发表了题为「What Bodies Think …- 970
- 0
AdaBoost分类器完全图解
译者 | 朱先忠审校 | 重楼本文将通过完整的源码与图解方式向你展示AdaBoost算法运行逻辑,并指出其优点与不足,还将其与随机森林算法进行对比分析。 简介每个人都会犯错,即使是机器学习领域最简单的决策树也存在这个问题。 AdaBoost(自适应增强)算法不会忽略这些错误,而是会做一些不同的事情:它会从这些错误中学习(或适应)以变得更好。- 972
- 0
澳门大学最新!CVPR’24 ALOcc:自适应再出山,精度与速度的完美均衡!
写在前面 & 笔者的个人理解基于视觉的语义占用和流量预测在为自动驾驶等现实世界任务提供时空线索方面发挥着至关重要的作用。 现有方法优先考虑更高的精度,以满足这些任务的需求。 在这项工作中,通过引入一系列针对3D语义占用预测和流量估计的有针对性的改进来提高性能。- 970
- 0
终于把 Seq2Seq 算法搞懂了!!
Seq2Seq(Sequence-to-Sequence)模型是一种用于处理序列数据的神经网络架构,广泛应用于自然语言处理(NLP)任务,如机器翻译、文本生成、对话系统等。 它通过编码器-解码器架构将输入序列(如一个句子)映射到输出序列(另一个句子或序列)。 图片模型结构Seq2Seq 模型由两个主要部分组成。- 969
- 0
快速学会一个算法,卷积神经网络
大家好,我是小寒今天给大家介绍一个强大的算法模型,卷积神经网络卷积神经网络(CNN)是一种专门用于处理图像、视频等具有网格结构数据的深度学习模型。 CNN 通过局部连接和参数共享的方式,大幅减少了模型的计算量,能有效提取数据的局部和全局特征,被广泛应用于计算机视觉领域,如图像分类、物体检测、图像分割等。 图片卷积神经网络的基本结构卷积神经网络的主要包括卷积层、池化层和全连接层。- 969
- 0
AI开源项目 | FastGPT- 深入解析 FastGPT 的知识库逻辑与检索机制:让 AI 更聪明的秘密
如何让 AI 更加智能化、精准化,成为了研究者和开发者们关注的焦点。 FastGPT 作为一款前沿的 AI 模型,其知识库逻辑与检索机制无疑是其成功的关键所在。 本文将为您详细解析 FastGPT 的知识库逻辑与检索机制,并结合知识库的特性,提供实用的教学意义,帮助您更好地理解这一技术背后的原理与应用。- 969
- 0
大模型压缩KV缓存新突破,中科大提出自适应预算分配,工业界已落地vLLM框架
改进KV缓存压缩,大模型推理显存瓶颈迎来新突破——中科大研究团队提出Ada-KV,通过自适应预算分配算法来优化KV缓存的驱逐过程,以提高推理效率。 打破KV Cache压缩将所有注意力头分配相同压缩预算的常规做法,针对不同的注意力头进行适配性压缩预算分配展开来说,由于大模型在自回归生成过程中,每生成一个新token都需要将对应的KV矩阵存储下来,这导致缓存随着生成序列长度的增加而急剧膨胀,引发内存…- 972
- 0
提升 1.5~20 倍吞吐量,字节豆包大模型团队与香港大学发布并开源全新 RLHF 框架
字节跳动豆包大模型团队与香港大学公开联合研究成果 —— HybridFlow。 官方宣称,HybridFlow(开源项目名:veRL)是一个灵活且高效的大模型 RL 训练框架,兼容多种训练和推理框架,支持灵活的模型部署和多种 RL 算法实现。 该框架采用混合编程模型,融合单控制器(Single-Controller)的灵活性和多控制器(Multi-Controller)的高效性,可更好实现和执行多…- 16
- 0
豆包大模型团队开源RLHF框架,训练吞吐量最高提升20倍
强化学习(RL)对大模型复杂推理能力提升有关键作用,但其复杂的计算流程对训练和部署也带来了巨大挑战。 近日,字节跳动豆包大模型团队与香港大学联合提出 HybridFlow。 这是一个灵活高效的 RL/RLHF 框架,可显著提升训练吞吐量,降低开发和维护复杂度。- 13
- 0
养猪业新神器,AI 工具可解读猪叫声背后的情绪
路透社于 10 月 24 日发布博文,报道称欧洲科学家开发了一种能够解读猪叫声的人工智能(AI)算法,从而帮助猪农了解猪的情绪和压力状态。 根据共同领导该研究的哥本哈根大学行为生物学家埃洛迪・曼德尔-布里费尔的说法,该算法有可能提醒农民注意猪的负面情绪,从而改善它们的福祉。 该研究由来自丹麦、德国、瑞士、法国、挪威和捷克共和国的科学家共同进行,核心是通过分析数千个不同情境下的猪叫声,理解它们所表达…- 8
- 0
逐际动力发布多形态双足机器人 TRON 1:可选双点足 / 双足 / 双轮足,6.98 万元起
逐际动力今天宣布发售首款多形态双足机器人 TRON 1,中国和海外同步上架,标准版早鸟价 6.98 万起。据介绍,TRON 1 采用“三合一”模块化设计,一机支持多形态算法研发,配合三种足端可兼顾人形机器人双腿结构的简易构型和多种足端的灵活切换(AI在线注:分别为双点足 / 双足 / 双轮足,可根据不同模式实现站立行走、全地形移动等能力)。根据足端拆装后的形态变化,TRON 1 可实现足端自适应识…- 3
- 0
AI 赋能游戏开发:Valve 工程师借助 ChatGPT 改进《Deadlock》匹配算法
感谢Valve 工程师 Fletcher Dunn 昨日在社交媒体上分享了他使用 ChatGPT 改进《Deadlock》匹配算法的经历。他表示,ChatGPT 就像一个高级搜索引擎,能够帮助他找到所需的解决方案。Dunn 在《Deadlock》的测试阶段向 ChatGPT 提出了改进匹配算法的需求,ChatGPT 建议他使用匈牙利算法。Dunn 采纳了这个建议,并表示他对 ChatGPT 的强大…- 9
- 0
提速1400倍,准确标注酶活性位点,浙大、澳门理工多模态深度学习方法,登Nature子刊
编辑 | 萝卜皮注释酶中的活性位点对于药物发现、疾病研究、酶工程和合成生物学等多个领域的发展至关重要。尽管已经开发出许多自动注释算法,但速度和准确性之间的重大权衡限制了它们的大规模实际应用。浙江大学、澳门理工大学等机构的联合研究团队引入了 EasIFA,一种酶活性位点注释算法,它融合了来自蛋白质语言模型和 3D 结构编码器的潜在酶表示,然后使用多模态交叉注意框架将蛋白质水平信息与酶促反应知识对齐。…- 42
- 0
研究:AI 测谎能力比人类更强,但会对社会交往造成影响
德国维尔茨堡大学当地时间 12 日公布的最新研究显示,在假新闻、政治家的可疑言论和被操纵的视频日益泛滥的时代,人工智能在测谎方面的表现比人类更佳。图源 Pixabay来自维尔茨堡、杜伊斯堡、柏林和图卢兹的研究人员探讨了 AI 在检测谎言方面的有效性及其对人类行为的影响。这项研究的主要发现可以总结如下:在基于文本的谎言检测中,AI 的准确性优于人类。没有 AI 的支持,人们不愿指责他人撒谎。在 AI…- 23
- 0
份子100%有用,从头设计配体,湖南大学提出鉴于片断的份子表征框架
编辑 | KX份子形容符广泛应用于份子建模,但在 AI 辅助份子发现领域,缺乏自然适用、完整且「原始」的份子表征是一个挑战,影响 AI 模型的本能和可解释性。在利用先进的自然语言处理(NLP)方法解决化学问题时,会出现两个基本问题:(1)什么是「化学词」?(2)如何将它们编码为「化学句子」?近日,湖南大学研讨团队提出了一种灵活的、鉴于片断的多尺度份子表征框架 t-SMILES 的框架来解决第二个问…- 13
- 0
算法
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
- ¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!