数据分布检验利器:通过Q-Q图进行可视化分布诊断、异常检测与预处理优化
在机器学习和数据分析中,我们经常需要验证数据是否符合某种特定的分布(如正态分布)。 这种验证对于选择合适的统计方法和机器学习模型至关重要。 例如许多统计检验和机器学习算法都假设数据服从正态分布。- 977
- 0
终于把机器学习中的交叉验证搞懂了!!
交叉验证是一种评估机器学习模型性能的方法,用于衡量机器学习模型的泛化能力(即在未见数据上的表现)。 它通过将数据集分成多个部分,交替使用不同的部分作为训练集和测试集,从而充分利用数据、避免过拟合或欠拟合,并更准确地评估模型的泛化能力。 核心思想数据划分:将数据集划分为训练集和测试集。- 970
- 0
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
在时间序列分析领域中,数据缺失是一个不可避免的挑战。 无论是由于传感器故障、数据传输中断还是设备维护等原因,这些缺失都会对数据分析和预测造成显著影响。 传统的处理方法,如前向填充或简单插值,虽然实现简单,但在处理复杂数据时往往表现不足。- 971
- 0
当下企业需要首席人工智能官吗?
随着人工智能产业加速,首席人工智能官(CAIO)已成为商业世界中最热门的工作之一。 新的CAIO通常承担着双重任务,即利用人工智能推进业务目标,同时确保技术具有负责任的治理。 正如设想的那样,CAIO与其他高层领导合作,评估新的人工智能解决方案,支持产品路线图,开发创新的人工智能产品,实施负责任的人工智能实践,并确保业务中所有受人工智能影响的方面都平稳地运行。- 973
- 0
原来机器学习那么简单—SVR
一、算法介绍 支持向量回归(SVR)是一种监督学习算法,用于解决回归问题。 其核心思想是找到一个超平面,这个超平面能够以最小的误差包含所有的训练样本。 与支持向量机处理分类问题类似,支持向量回归的目标是确保尽可能多的数据点位于由超平面决定的边界内。- 971
- 0
时间序列模型的演变:人工智能引领新的预测时代
译者 | 布加迪审校 | 重楼我们正处于这样一个时代:大型基础模型(大规模通用神经网络以无监督的方式使用大量不同的数据进行预训练)彻底改变计算机视觉、自然语言处理以及最近的时间序列预测等领域。 这种模型通过实现零样本预测来重塑时间序列预测领域,允许使用新的、未见过的数据进行预测,无需针对每个数据集进行重新训练。 这一突破显著缩减了开发时间和成本,简化了为不同任务创建和微调模型的过程。- 973
- 0
在PostgreSQL数据库中应用机器学习进行预测性容量规划
译者 | 李睿审校 | 重楼如今,数据库领域正在迅速向人工智能(AI)和机器学习(ML)迈进,数据库的工作量将会大幅增加。 对于数据库管理员来说,提前预测数据库基础设施的工作负载并满足需求将是一项额外的责任。 随着数据库规模的扩展和资源管理变得越来越重要,传统的容量规划方法往往难以满足需求,从而导致性能问题和计划外停机。- 974
- 0
从零开始学机器学习—分类器详解
首先给大家介绍一个很好用的学习地址:,利用多种分类器对这些数据进行训练,以构建有效的模型。 在这个过程中,我会详细讲解每一种分类器的原理及其重要性。 尽管这些知识点对于实践来说并不是必须掌握的,因为第三方依赖包已经为我们完成了大量的封装,使得调用这些功能仅需一行代码,但理解其背后的原理仍然至关重要。- 975
- 0
全球顶尖天气预报系统被AI击败,DeepMind新模型登Nature,8分钟搞定未来15天预测
编辑 | 萝卜皮天气预报从根本上来说具有不确定性,因此预测可能发生的天气情景范围对于重要决策至关重要,从警告公众注意危险天气到规划可再生能源的使用。 传统上,天气预报基于数值天气预报 (NWP),它依赖于基于物理学的大气模拟。 基于机器学习 (ML) 的天气预报 (MLWP) 的最新进展产生了基于 ML 的天气模型,其预测误差比单一 NWP 模拟要小。- 974
- 0
利用人工智能实现高效物流和绿色解决方案的智能路线
通过先进的路线优化技术,研究人工智能在提高物流效率和促进环境可持续性方面的作用。 对高效物流日益增长的需求和对环境可持续性的迫切需求需要创新的解决方案来优化运输路线和减少温室气体排放。 本研究探讨了人工智能(AI)在提高物流效率和减少环境影响方面的作用,方法是利用现实世界的工业物流数据集,应用各种回归模型来预测运输时间和排放。- 974
- 0
Python 机器学习:十个入门机器学习的必备库
大家好!今天我们要聊的是 Python 机器学习中不可或缺的 10 . 无论你是刚刚接触机器学习的新手,还是已经有一定经验的老手,这些库都能帮助你更好地理解和应用机器学习技术。 让我们一步步来,从最基础的库开始,逐渐深入到更高级的工具。- 975
- 0
写作“核武器”!Claude推出强大的写作样式自定义输出,无限满足你的要求
刚刚Anthropic为Claude推出了样式定制 (choose style) 功能,通过样式现在可以自定义Claude 响应方式,无限贴近个人写作风格和需求样式定制的核心理念是让AI能够更加贴近用户的沟通需求和学习风格。 这就像是为智能助手量身定制一套专属"语言和思维"的行为准则让我们深入探索这一功能的精妙之处预设样式:灵活多变的交互模式Claude提供了多种预设样式,每一…- 997
- 0
如何在组织中启用机器学习
译者 | 李睿审校 | 重楼计划在组织内部引入人工智能/机器学习的产品经理通常会提出这样一个问题:“我从哪里开始着手? ”对于缺乏该领域经验的组织来说,深入研究人工智能/机器学习可能会让人感到不知所措。 构建机器学习产品需要不同类型的技能和流程,而这些技能和流程需要逐步被吸纳并融入组织的日常运作中。- 971
- 0
终于把机器学习中的超参数调优搞懂了!!!
大家好,我是小寒今天给大家分享机器学习中的一个关键知识点,超参数调优超参数调优是机器学习中调整模型超参数以优化模型性能的过程。 超参数是用户在模型训练前需要手动设置的参数,与训练过程中通过算法自动调整的参数(如神经网络中的权重)不同。 这些超参数直接控制着训练过程和模型的行为,例如学习率、隐藏层的数量、隐藏层的节点数等。- 972
- 0
利用人工智能改变金融处理方式
人工智能(AI)引发了一系列技术革命,有望改变众多行业和社会领域。 从医疗保健到教育,从交通到安全,人工智能可以快速改变企业的运营和成功方式。 在金融处理领域,人工智能的潜在变革力量最为明显。- 974
- 0
AdaBoost分类器完全图解
译者 | 朱先忠审校 | 重楼本文将通过完整的源码与图解方式向你展示AdaBoost算法运行逻辑,并指出其优点与不足,还将其与随机森林算法进行对比分析。 简介每个人都会犯错,即使是机器学习领域最简单的决策树也存在这个问题。 AdaBoost(自适应增强)算法不会忽略这些错误,而是会做一些不同的事情:它会从这些错误中学习(或适应)以变得更好。- 972
- 0
AI重塑医疗保健领域的消费者体验中的潜力、挑战与策略
AI驱动的解决方案能够从以往难以获取的数据中挖掘出有价值的见解,并以前所未有的规模实现消费者互动和个性化服务,从而提升医疗行业的业务成果。 在快速变化的医疗领域,AI有潜力重塑消费者与医疗服务的互动方式。 如今,美国的消费者在寻找合适的保险覆盖、了解何时应就医、就医费用以及如何管理自身健康等方面面临诸多困难。- 972
- 0
传说中Ilya Sutskever精选论文清单:AI领域40大论文完整版「破解」完成
今年 5 月,一份网传 OpenAI 联合创始人兼首席科学家 Ilya Sutskever 整理的一份机器学习研究文章清单火了。 网友称「Ilya 认为掌握了这些内容,你就了解了当前(人工智能领域) 90% 的重要内容。 」据说这份论文清单是 2020 年 OpenAI 的联合创始人、首席科学家 Ilya Sutskever 给另一位计算机领域大神,id Software 联合创始人,致力于转行 …- 978
- 0
克服机器学习转换器的局限性——从位置嵌入到RoPE和ALiBi方法
译者 | 朱先忠审校 | 重楼引言近年来开发出的机器学习模型的指数级进步与转换器架构的出现密切相关。 以前,人工智能科学家必须先为手头的每项任务选择架构,然后再进行超参数优化以获得最佳性能。 限制科学家们潜力的另一个挑战是难以处理数据的长期依赖性,难以解决梯度消失、长序列上下文丢失以及因局部约束而无法捕获全局上下文的问题。- 970
- 0
量子计算和人工智能融合如何开启新技术革命
译者 | 晶颜审校 | 重楼量子计算与经典人工智能的融合势不可挡! 量子计算和人工智能(AI)的融合代表了计算科学中最有前景的前沿之一。 作为量子计算研究科学家,我们正站在一个新时代的崖边,在这个新时代,量子系统的独特能力正被用于增强和加速传统的人工智能算法,而人工智能技术同时被用于优化量子电路并减轻嘈杂的中等规模量子(NISQ)设备中的误差。- 968
- 0
终于把机器学习中的损失函数搞懂了!!!
Mean Squared Error (MSE)MSE 是回归任务中最常用的损失函数之一。 它衡量模型预测值与实际值之间的平均平方误差。 公式:特点:对于大的误差,MSE 会给出更大的惩罚,因为误差被平方。- 969
- 0
一种实现符号钢琴音乐声音和谱表分离的GNN新方法
译者 | 朱先忠审校 | 重楼本文涵盖了我最近在ISMIR 2024上发表的论文《聚类和分离:一种用于乐谱雕刻的声音和谱表预测的GNN方法》的主要内容。 简介以MIDI等格式编码的音乐,即使包含量化音符、拍号或小节信息,通常也缺少可视化的重要元素,例如语音和五线谱信息。 这种限制也适用于音乐生成、转录或编曲系统的输出。- 971
- 0
深入理解多重共线性:基本原理、影响、检验与修正策略
在数据科学和机器学习领域,构建可靠且稳健的模型是进行准确预测和获得有价值见解的关键。 然而当模型中的变量开始呈现出高度相关性时,就会出现一个常见但容易被忽视的问题 —— 多重共线性。 多重共线性是指两个或多个预测变量之间存在强相关性,导致模型难以区分它们对目标变量的贡献。- 968
- 0
使用 SHAP 使机器学习模型变的可解释!!
SHAP 是一种解释机器学习模型预测结果的方法,它基于博弈论中的 Shapley 值理论。 它通过计算每个特征对模型输出的贡献度,帮助我们理解模型的决策过程。 SHAP 适用于各种类型的机器学习模型,使得黑盒模型(如深度神经网络、随机森林等)的预测更加透明、可解释。- 969
- 0
机器学习
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
- ¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!