耶鲁、剑桥等开发MindLLM,将脑成像直接转换为文本

编辑 | 萝卜皮将功能性磁共振成像 (fMRI) 信号解码为文本一直是神经科学界面临的一项重大挑战,它有望推动脑机接口的发展,并加深对大脑机制的了解。 然而,现有的方法往往存在预测性能不佳、任务种类有限以及跨受试者泛化能力较差等问题。 针对这一问题,耶鲁大学(Yale University)、达特茅斯学院(Dartmouth College)和剑桥大学(University of Cambridge)的研究人员提出了 MindLLM,一种专为主题无关且用途广泛的 fMRI 到文本解码而设计的模型。

图片

编辑 | 萝卜皮

将功能性磁共振成像 (fMRI) 信号解码为文本一直是神经科学界面临的一项重大挑战,它有望推动脑机接口的发展,并加深对大脑机制的了解。然而,现有的方法往往存在预测性能不佳、任务种类有限以及跨受试者泛化能力较差等问题。

针对这一问题,耶鲁大学(Yale University)、达特茅斯学院(Dartmouth College)和剑桥大学(University of Cambridge)的研究人员提出了 MindLLM,一种专为主题无关且用途广泛的 fMRI 到文本解码而设计的模型。

此外,研究人员提出了一种新方法——大脑指令调整 (BIT),可增强模型从 fMRI 信号中捕获不同语义表示的能力,从而促进更通用的解码。

在全面的 fMRI 到文本基准上的评估中, MindLLM 优于基线,下游任务提高了 12.0%,未知主题泛化提高了 16.4%,新任务适应提高了 25.0%。此外,MindLLM 中的注意力模式为其决策过程提供了可解释的见解。

该研究以「MindLLM: A Subject-Agnostic and Versatile Model for fMRI-to-Text Decoding」为题,于 2025 年 2 月 18 日发布在 arXiv 预印平台。

图片

解码人类大脑活动(fMRI)为文本在神经科学领域引起了广泛关注。这一技术不仅为认知、行为和意识研究提供了新视角,还具有重要的社会应用价值。

例如,它可以帮助语言障碍者恢复沟通能力,使他们能够轻松表达思想;同时,它还能实现健康人群对数字设备(如具身 AI 或假肢)的神经控制,使操作更加直观和精确。

然而,该技术仍面临重大挑战:一是需要针对不同应用场景开发多功能解码模型,现有方法如 UMBRAE 虽能映射 fMRI 数据到刺激图像,但无法处理更广泛的任务(如记忆检索);二是缺乏统一且不依赖个体的解码架构,当前方法依赖预处理选择响应体素,导致输入维度不一致和空间信息丢失,影响性能。

研究人员提出了 MindLLM,一种用于 fMRI 到文本解码的主题无关且通用的模型。该方法包括一个主题无关的 fMRI 编码器和一个现成的 LLM。

图片

图示:MindLLM 概述。(来源:论文)

主题无关的 fMRI 编码器将神经科学信息注意层与可学习查询相结合,通过利用体素的空间信息和神经科学先验来实现动态特征提取,从而显著提高预测准确性。值和键的设计将体素的功能信息(在个体之间基本一致)与其 fMRI 值分开,从而使模型能够受益于跨主体共享的先验,并增强对新主体的概括性。

为了应对多功能解码的挑战,研究人员提出了脑指令调整(BIT)。BIT 使用以图像为中介的多样化数据集来训练模型,涵盖旨在捕获 fMRI 数据中编码的语义信息的不同方面的任务,包括感知和场景理解、记忆和知识检索、语言和符号处理以及复杂推理。

图片

图示:我们的模型与之前的统一模型的比较。(来源:论文)

研究人员在综合基准上评估了 MindLLM。结果表明,它的表现优于基线,在各种下游任务中平均提高了 12.0%,在未见过的主题上的泛化提高了 16.4%。

MindLLM 能够有效地适应新任务,在实际应用中表现出很高的可定制性和灵活性。此外,对注意力权重的分析为该团队 fMRI 编码器的工作机制提供了宝贵的见解。

论文链接:https://arxiv.org/abs/2502.15786

相关报道:https://medicalxpress.com/news/2025-02-brain-imaging-text-mindllm.html

相关资讯

「硅基大脑」来了,UCSF华人实验室打造!神经科学未来不是碳基?

AI起源于人类利用「电脑」模拟「大脑」,希望计算机和人类一样可以处理各种任务。 或许,计算机还没有产生和人类一样的「智慧」。 但不妨设想一下「硅基大脑」—— 高级的AI模型,它能够破译人类的思维,让「哑巴」重新说话,也许有朝一日,甚至能预测大脑的「一举一动」。

绘制最全最大人脑图,AI结合显微镜,谷歌、哈佛10年研究,登Science

编辑 | 紫罗一立方毫米的脑组织听起来可能并不多。但这个小方块包含 57,000 个细胞、230 毫米的血管和 1.5 亿个突触,总计 1,400 TB 的数据,哈佛大学和谷歌的研究人员刚刚完成了一项巨大的成就。研究人员共同创建了迄今为止最大的突触分辨率、3D 重建的人类大脑片段,以生动的细节展示了一块大约半米粒大小的人类颞叶皮层中的每个细胞及其神经连接网络。这是哈佛大学与谷歌科学家近 10 年合作的最新成果,谷歌将 Lichtman 的电子显微镜成像与 AI 算法相结合,对哺乳动物大脑极其复杂的线路进行颜色编码和

Nature子刊 | 基于内生复杂性,自动化所新类脑网络构筑人工智能与神经科科学的桥梁

AIxiv专栏是AI在线发布学术、技术内容的栏目。过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]本篇工作发表在《Nature Computational Science》上,共同通讯作者是中国科学院自动化所李国齐研究员、徐波研究员,北京大学田永鸿教授。共同一作是清华大学钱学森班的本科