语言模型

清华大学AIR联合水木分子开源DeepSeek版多模态生物医药大模型BioMedGPT-R1

编辑 | ScienceAI2025 年初,DeepSeek给全球引发了 AI 大模型的新一轮热议。 多家市场咨询公司指出,在 DeepSeek 的影响下,从大模型供应商到基础设施和平台供应商的整个 AI 产业生态都掀起了一波「新浪潮」。  DeepSeek R1 以其强大的推理能力,为各行各业带来了智能化升级新机遇。

西北工业大学开源语音理解模型OSUM,结合Whisper和Qwen2,支持8种语音理解任务

在人工智能领域,语言模型的快速发展引发了语音理解语言模型(SULMs)的广泛关注。 近日,西北工业大学 ASLP 实验室发布了开放语音理解模型 OSUM,旨在探索在学术资源有限的情况下,如何有效训练和利用语音理解模型,以推动学术界的研究与创新。 OSUM 模型融合了 Whisper 编码器与 Qwen2语言模型,支持8种语音任务,包括语音识别(ASR)、带时间戳的语音识别(SRWT)、语音事件检测(VED)、语音情感识别(SER)、说话风格识别(SSR)、说话人性别分类(SGC)、说话人年龄预测(SAP)及语音转文本聊天(STTC)。

Mistral AI 发布 Saba:专注于中东和东南亚语言的AI模型

Mistral AI 近日推出了名为 Saba 的新型语言模型,该模型专注于提升对中东和东南亚地区语言及文化差异的理解。 Saba 模型拥有240亿参数,虽然规模小于许多竞争对手,但 Mistral AI 声称其在保证准确性的同时,提供了更高的速度和更低的成本。 其架构可能与 Mistral Small3模型相似。

本地部署 DeepSeek:打造你的专属 AI 推理环境,简单明了适合新手

随着 AI 大模型的爆发,DeepSeek 作为一款备受瞩目的开源大模型,吸引了众多开发者的关注。 如何在本地搭建 DeepSeek 推理环境,以便更高效地进行 AI 研究和应用开发? 本篇文章将为你详细解析本地部署 DeepSeek 的完整流程,让你轻松打造属于自己的 AI 推理环境。

AI意识更进一步!谷歌DeepMind等:LLM不仅能感受痛苦,还能趋利避害

在科幻电影《机械姬》中,女主角是一款能够感受痛苦的机器人;然而LLM为代表的AI能否感知痛苦和快乐,一直是存在争议。 一些科学家认为,大模型缺乏相应的生理结构和神经系统,因此无法体验情感。 而另一些人则认为,大模型能够生成关于痛苦和快乐的详细描述,并且能够在选择情境中权衡痛苦和快乐,这表明它们可能具有某种程度的情感体验。

LLM时代,计算蛋白质科学进展如何?香港理工大学等发布系统性综述

编辑丨coisini作为生命的基本构建单元,蛋白质在几乎所有基本生命活动中扮演着不可或缺的角色,例如新陈代谢、信号传导、免疫反应等。 如下图所示,蛋白质遵循序列 - 结构 - 功能范式。 图注:蛋白质遵循序列-结构-功能范式。

重磅!斯坦福等高效联手推出AI训练新方法S1,成本暴降性能飙升!

斯坦福大学和华盛顿大学的研究团队近日联合发布了一项突破性的AI训练方法,该方法名为S1,其核心理念在于利用极简的测试时缩放技术来显著提升语言模型的推理能力。 与以往依赖庞大算力或复杂算法不同,S1方法巧妙地通过控制模型在测试时的计算资源分配,实现了性能的飞跃。 S1方法首先精心构建了一个名为s1K的小型数据集,其中包含1000个高质量的推理问题。

OpenAI新研究:o1增加推理时间就能防攻击,网友:DeepSeek也受益

OpenAI的新Scaling Law,含金量又提高了。 像o1这样的推理模型,随着思考时间的延长,面对对抗性攻击会变得更加稳健。 图片随着大语言模型被越来越多地赋予Agent能力,执行现实世界的任务,模型被对抗攻击的风险也与日俱增。

Meta公布BLT新架构:告别token,拥抱patch

译者 | 核子可乐审校 | 重楼Meta发布的BLT架构为大模型扩展找到又一条出路,也开启了用patch方法取代token的全新可能性。 开篇先提问:我们为什么非得把文本拆分成token? 直接用原始字节怎么就不行?

本科学历但创造出GPT,奥特曼盛赞为「爱因斯坦级」天才,OpenAI总裁:他想要的,我们都给

奥特曼称他是爱因斯坦级别的天才;OpenAI总裁更是直言:只要他想要的,我们都给。 Alec Radford大神离职OpenAI,现在牵出更多细节:改变世界的GPT,竟然是在Jupyter notebook上诞生的。 而他只负责提供背后的灵感,剩下的由工程师来解决。

使用LLaMA 3.1、Firebase和Node.js,构建一个音控的智能厨房应用程序

译者 | 布加迪审校 | 重楼这篇指南逐步介绍了创建一个自动化的厨房助理的过程,附有语音命令、实时购物清单管理以及食谱建议。 我在本教程中将介绍创建一个智能厨房应用程序(Chent),它可以根据个性化偏好简化杂货清单管理。 该应用程序通过语音命令操作,简化了人机交互和添加商品。

全面超越CoT!Meta田渊栋团队新作:连续思维链

比思维链更厉害的方法是什么? 答:连续思维链。 近日,Meta田渊栋团队提出了针对LLM推理任务的新范式:Coconut( Chain of Continuous Thought)。

量化617,462种人类微蛋白必需性,北大LLM蛋白质综合预测与分析,登Nature子刊

编辑 | 萝卜皮人类必需蛋白(HEP)对于个体的生存和发育必不可少。 然而,鉴定 HEP 的实验方法通常成本高昂、耗时费力。 此外,现有的计算方法仅在细胞系水平上预测 HEP,但 HEP 在活体人类、细胞系和动物模型中有所不同。

压缩率达10的48次方,实现蛋白序列空间极端压缩,清华EvoAI登Nature子刊

编辑 | 萝卜皮设计功能更佳的蛋白质需要深入了解序列和功能之间的关系,这是一个难以探索的广阔空间。 通过识别功能上重要的特征来有效压缩这一空间的能力极其宝贵。 清华大学的研究团队建立了一种称为 EvoScan 的方法,用于全面分割和扫描高适应度序列空间,以获得能够捕捉其基本特征(尤其是在高维度中)的锚点。

指令跟随大比拼!Meta发布多轮多语言基准Multi-IF:覆盖8种语言,超4500种任务

在大语言模型(LLMs)不断发展的背景下,如何评估这些模型在多轮对话和多语言环境下的指令遵循(instruction following)能力,成为一个重要的研究方向。 现有评估基准多集中于单轮对话和单语言任务,难以揭示复杂场景中的模型表现。 最近,Meta GenAI团队发布了一个全新基准Multi-IF,专门用于评估LLM在多轮对话和多语言指令遵循(instruction following)中的表现,包含了4501个三轮对话的多语言指令任务,覆盖英语、中文、法语、俄语等八种语言,以全面测试模型在多轮、跨语言场景下的指令执行能力。

如何简单理解视觉语言模型以及它们的架构、训练过程?

关于视觉语言模型(VLMs),以及它们的架构、训练过程和如何通过VLM改进图像搜索和文本处理的多模态神经网络。 可以参考这篇文章:(VLMs),它们是未来的复合AI系统。 文章详细描述了VLMs的基本原理、训练过程以及如何开发一个多模态神经网络,用于图像搜索。

AI能夺走网文界的一切吗?

AI好好用原创作者:Pandora写网络小说,手拿把掐? 还差得远呢。 AI 学者拿下诺贝尔物理学奖、化学奖后,网友纷纷揶揄说:下一个被 AI 攻陷的诺奖会是 ......

AI搞科研?西湖大学发布「AI科学家」Nova,效果比SOTA竞品提升2.5倍

编辑 | ScienceAI伟大科学家的研究,往往开始于一个小的灵感、小的创意。 长久以来,科学创新与研究能力被视为人类在人工智能时代中坚守的一片独特领地。 然而,一篇来自西湖大学深度学习实验室的论文在科学界掀起了波澜。