学习
综述:药物发现中的机器学习
编辑 | 萝卜皮不知不觉,人工智能已经渐渐延伸到了各个领域,医药领域也不例外。来自印度 B V Raju 理工学院的研究人员发表综述,讨论了药物发现中的机器学习,归纳总结了应用于制药领域的各类机器学习技术,并指出当前该领域发展的难点,以及未来发展方向。该综述以「Machine Learning in Drug Discovery: A Review」为题,于 2021 年 8 月 11 日发布在《Artificial Intelligence Review》杂志。人工智能概念与许多领域密切相关,如模式识别、概率论、
优秀!2021年谷歌博士生奖研金陆续揭晓,同济校友王鑫龙、南大校友李昀入选
在近日公布的谷歌2021博士生奖研金部分名单中,来自阿德莱德大学、新南威尔士大学、昆士兰科技大学和悉尼大学的四位博士生获得该殊荣。
UC伯克利教授Pieter Abbeel开课了:六节课入门「深度强化学习」,讲义免费下载
课程视频时间有点长,但希望你能享受学习的快乐。将传统强化学习与深度神经网络结合的深度强化学习,一直以来被视为更接近人类思维方式的人工智能方法。深度学习具备强感知能力但缺乏一定的决策能力,强化学习具备决策能力但对感知问题束手无策,因此将两者结合起来可以达到优势互补的效果,为复杂系统的感知决策问题提供了解决思路。想要入门深度强化学习的同学们,请高度注意,一份优秀、细致、全面的新教材出现了。今天,UC 伯克利教授 Pieter Abbeel 上传了自己的新课程《深度强化学习基础》的最后一节视频,并在推特上安利了一下。这份
周志华、李航、邱锡鹏、李沐、Aston Zhang 5位专家指导,机器之心发布ML术语中英对照词表
几年前机器之心发布了一个旨在构建 AI 领域术语库的开源项目「Artificial-Intelligence-Terminology-Database」(简称「AITD」)。最近,该项目迎来了第三版。除了常规的更新之外,机器之心还在周志华教授、李航博士、邱锡鹏教授、李沐博士、Aston Zhang 博士等领域专家的指导及帮助下形成了「机器学习」专题篇。未来,机器之心还将会持续完善术语的收录和扩展阅读的构建,另外我们也希望更多 AI 技术社区成员参与到术语库的构建之中,具体的参与方式可以查看文章详情。2017 年,机
AAAI 2021论文:Graph Diffusion Network提升交通流量预测精度(附论文下载)
城市流量预测作为智能交通中的一个重要问题,致力于精确预测城市中不同区域的流量信息,从而更好地实现区域间的流量管控、拥塞控制以及保障城市公共安全。本文将介绍一种基于时空图扩散网络的城市交通流量预测模型。本文工作是由京东数科硅谷研发实验室,京东城市和华南理工大学合作的一篇论文《Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network》,目前该论文已经被人工智能领域的顶级会议AAAI 2021(CCF A类)接收。
经典教材《统计学习导论》第二版来了,新增深度学习等内容,免费下载
经典的《统计学习导论》又出第二版了,相比于第一版,新版增加了深度学习、生存分析、多重测试等内容,可免费下载。
《Pattern Recognition Letters》特刊通知
主题:深度学习模型安全简介:深度学习已广泛应用于自然语言处理、计算机视觉、数据安全等诸多领域。为学习到有效的深度模型,需花费大量时间和精力来收集数据与分配计算资源。这些模型可能会被非法使用,从而牺牲模型所有者的权益。另一方面,深度学习模型也容易受到对抗样本或毒化数据的攻击。这严重降低了深度学习技术的准确性和可靠性。为此需进行深度学习模型安全研究,保障模型的真实性和可靠性,以抵御各种攻击。该研究还处于起步阶段,虽然已取得了一定进展,但要为基于深度学习的应用开发稳健可靠的模型还远远不够。本期特刊旨在推动深度学习模型的攻
入门迁移学习,跟着知乎大V王晋东的这个火热开源项目来学习(赠书)
如何从方法层面对现有的迁移学习方法进行创新,从而可以在方法和应用层面使迁移学习迈向新的高度?
Judea Pearl推荐,UC伯克利研究者合著机器学习新书,可当研究生教材
前段时间,加州大学伯克利分校 Moritz Hardt 和 Benjamin Recht 合著的新书受到了广泛关注。这本书主要阐述了机器学习的模式、预测以及实现,并面向研究生使用。
吴恩达那场十万人观看的讲座,如今有了专项课程
如果你看过那个一小时的演讲,而且觉得意犹未尽,这门课程可能适合你。
每月1万美元,OpenAI提供资助和导师,这些年轻学者在研究什么?
半年来,9 位「毕业生」完成了从转行、入门到精通的研究旅程。
150页在线书「几何深度学习」上线:利用对称性和不变性解决机器学习问题
CNN、GNN、LSTM、Transformer 等深度学习模型之间的共通之处是什么?在这本书里问题得到了解答。
李沐「动手学深度学习」第二部分CNN本周开课,也邀你挑战他10行代码的竞赛成绩
本周六,课程将进入第二部分:卷积神经网络,欢迎对这部分有疑问的同学上车学习。
【征稿】IJCAI 2021联邦学习与迁移学习国际研讨会
数字时代,隐私和安全正成为一个关键问题。公司和组织每天都在收集大量的数据,然而数据隐私保护相关法律法规越来越严格,给大数据和人工智能带来了新的挑战。例如欧盟的《通用数据保护条例》(General data Protection Regulation,GDPR)就明确提出,禁止在没有明确用户授权的情况下,直接合并来自不同来源的用户数据进行AI建模。为了探索AI如何适应这种新的监管环境,微众银行、京东、第四范式等中国企业联合香港科技大学、新加坡南洋理工大学、普林斯顿大学等国际知名高校及科研院所,将在第30届人工智能国际
论机器学习领域的内卷:不读PhD,我配不配找工作?
机器学习内卷了吗?
开课啦!李宏毅2021《机器学习》中文课程全面上新,纯线上,还不快跟?
「宝可梦大师」李宏毅又开课了,小板凳搬好了吗?在机器学习教育领域,台湾大学电机工程系助理教授李宏毅以鲜明的个人风格独树一帜。在课堂上,他经常用增强现实游戏「宝可梦 Go」举例,不仅语言风趣幽默,PPT 的可视化也做得非常用心。最重要的是,他的授课语言是中文(标准台湾普通话)。因此,不少人将其推荐为入门机器学习的首选课程。李宏毅老师往期课程截图。2、3 月份是新学期的开始,李宏毅老师也宣布了他的《机器学习》课程上新的消息。新课程从 2 月 26 日正式开始,6 月中旬正式结束,视频、PPT 都会上传到课程主页上。课程
从算法到开发,字节跳动Leader们最中意的40项学习资源
“春季招聘和金三银四要开始了,我想提升技术,更上一层楼,除了投简历刷题,还有什么可以努力的方向啊?”如果你是技术领域的新人,或者已经毕业多年、正在考虑转向新的技术方向,上面这个问题可能正在困扰着你。为了回答这个问题,技术范儿找到了多媒体、推荐算法、计算机视觉、强化学习、机器翻译、知识图谱、安卓、iOS、服务端、前端等几个方向的Leader,推荐了各个技术方向的自学资源。其中,有不少业界知名的书籍、全球CS名校的公开课程,可以系统性地帮你了解一个领域的全貌。还有不少应用技术和开源项目,工业界的常备工具都列齐了。另外,
是时候学习机器学习系统设计了!斯坦福CS 329S开课,课件、笔记同步更新
这是一门新的课程——在学习了算法、框架等内容后,是时候深入了解一下「机器学习系统设计」了!