学习
颜水成、David Silver等10人入选,2022 AAAI Fellow名单公布
2022 年度 AAAI Fellows 共有 10 位学者入选。
机器学习获得了量子加速
编辑 | 萝卜为了让 Valeria Saggio(麻省理工学院的量子物理学家)在她以前的维也纳实验室启动计算机,她需要一个特殊的水晶;水晶大概只有她的指甲那么大。Saggio 会轻轻地将它放入一个小铜盒,一个微型电烤箱,将晶体加热到 77 华氏度。然后她会打开激光,用一束光子轰击晶体。这种晶体,在这个精确的温度下,会将其中一些光子分裂成两个光子。其中一个会直接进入一个光探测器,它的旅程就结束了;另一个将进入一个微型硅芯片——一个量子计算处理器。芯片上的微型仪器可以驱动光子沿着不同的路径前进,但最终只有两种结果:正
吴凌飞、崔鹏、裴健、赵亮联合撰写,一本书读懂图神经网络的基础、前沿、应用(免费下载)
这本书称得上是目前为止图神经网络领域最为全面的卓越之作。
技术博客丨原来模型训练可以不用标注?一文全解四大机器学习方法
本文将用通俗的方式,为大家介绍耳熟能详却分辨不清的四个机器学习核心概念:监督式学习、半监督学习、非监督学习和自监督学习,并将用实例简介它们试图解决的问题。
ScienceAI 2021「AI+材料」专题年度回顾
编辑/凯霞传统的材料设计与研发,以实验和经验为主。但随着材料化学和加工变得越来越复杂,这变得越来越具有挑战性。随着人工智能(AI)的快速发展,AI 技术已广泛应用于材料科学各领域。科学家正努力通过计算机建模和 AI 技术,根据所需要的性能预测候选材料,从而加快新材料的研发速度和效率,降低研发成本。AI 正在加速搜索和预测材料特性。在 AI 的助力下,材料在极端、恶劣条件下的性能得到快速且准确的预测,实现了人类目前无法实现的......利用 AI 技术来加速设计和发现尚不存在的材料。这些先进的材料将使技术更先进和更环
可对药物分子进行表征的几何深度学习
编辑 | 萝卜皮几何深度学习(GDL)基于包含和处理对称信息的神经网络架构。GDL 为依赖于具有不同对称性和抽象级别的分子表示的分子建模应用程序带来了希望。苏黎世联邦理工学院的研究人员对分子 GDL 进行了结构化和统一概述,重点介绍了其在药物发现、化学合成预测和量子化学中的应用。它包含对 GDL 原理的介绍,以及相关的分子表示,例如分子图、网格、曲面和字符串,以及它们各自的属性。讨论了分子科学中 GDL 当前面临的挑战,并尝试预测未来的机会。该综述以「Geometric deep learning on molec
深度学习如炼丹,你有哪些迷信做法?网友:Random seed=42结果好
调参的苦与泪,还有那些「迷信的做法」。
佐治亚理工学院硕士建议:2022年你应该掌握这些机器学习算法
2022 年你应该知道的所有机器学习算法。
Yann LeCun主讲,纽约大学《深度学习》2021春季课程放出,免费可看
Yann LeCun 主讲的《深度学习》课程现已全部在线可看!
ICLR 2022初审你得了多少分?平均4.93浮动,预测6分才被接收
晒出自己的分数吧!
科学机器学习的竞争和共识:博弈论方法如何导致更智能的人工智能
编译/凯霞得益于空军科学研究办公室的195 万美元赠款,马萨诸塞大学阿默斯特分校数学和统计系教授 Markos Katsoulakis 和 Luc Rey-Bellet,以及布朗大学的 Paul Dupuis 将在接下来的四年开发一种新的机器学习方法,超越对大数据的传统依赖。Markos KatsoulakisLuc Rey-Bellet传统的机器学习依赖于庞大的数据缓存,算法可以筛选这些数据以「训练」自己完成任务,从而产生基于数据的数学模型。但是,如果数据很少,或者生成足够多的数据成本太高,该怎么办呢?一种可能的
工业环境中对机器学习的行业视角
编辑/凯霞Google Applied Science 是 Google Research 的一个部门,将计算方法,尤其是机器学习,应用于广泛的科学问题。不久前帕特里克·莱利(Patrick Riley)还是该部门软件工程师之一,现在是 Relay Therapeutics 的人工智能负责人,他与《Nature Reviews Materials》谈论了他在工业环境中从事机器学习项目的经验。你能告诉我们一些关于你所做的事情以及谷歌机器学习研究的事情吗?我在 Google Applied Science () 的小组
2021入坑机器学习,有这份指南就够了
这是一份适用于小白的机器学习超丰富资源指南。机器学习社区社交媒体上经常有人提出这样的问题:我如何开始机器学习?我如何免费学习?什么是人工智能?我怎样才能学会它?人工智能是如何工作的?我该从何学起?如果我没有开发人员背景,该如何开始?......面对这些问题,油管博主 What's AI——Louis Bouchard 撰写了一份关于「如何在 2021 年零基础开始机器学习」的完整指南,整合了大量学习资源,而且大部分是免费的。项目地址: 1.6K star 量,并且仍在持续更新中。我们来看一下这份指南的具体内容。1.
曝光!阿里50余位工程师私藏的学习资源清单
学习是⼀个不断精进的过程,没有 standard destination。我们经常听到技术人各种学习困扰:●「AI 领域发展太快了,感觉囤积的学习资源好容易过时。」●「网上资料和课程太多了,不知道怎么筛选出适合自己的经典资料。」●「想知道阿里 p7p8 同学的技术成长路线,都有哪些精进方式?」工欲善其事,必先利其器。⼀份高质量的学习资源是每位技术同学的成长必需品。通常来说,只有当学习资源 catch 到我们知识盲点的时候才能勾起我们的兴趣,此外,相关领域的前辈根据自身经验的推荐,是不错的筛选标准。基于此,来自阿里淘
Jupyter笔记本实现,慕尼黑工大220页免费书籍介绍基于物理的深度学习
物理知识和深度学习已经成为了解决现实问题的绝佳组合,但如何更有效地将物理模型引入深度学习领域缺少一个全面的综述。慕尼黑工业大学计算机科学副教授 Nils Thuerey 团队编写的这本书籍对基于物理的深度学习展开了详尽的介绍。书籍地址:::,《基于物理的深度学习》(Physics-based Deep Learning)介绍了物理建模、数值模拟与基于人工神经网络方法的结合。基于物理的深度学习代表了一个非常活跃、快速发展和令人兴奋的研究领域。就内容而言,本书对物理模拟背景下与深度学习相关的所有内容展开了非常全面的介绍
DeepMind联合UCL,推出2021强化学习最新课程
DeepMind 的研究科学家和工程师亲自讲授了一套强化学习课程,目前已全部上线。DeepMind 作为全球顶级 AI 研究机构,自 2010 年创建以来已有多项世界瞩目的研究成果,例如击败世界顶级围棋玩家的 AlphaGo 和今年高效预测的蛋白质结构的 AlphaFold。近几年,DeepMind 联合伦敦大学学院(UCL)推出了一些人工智能线上课程,今年他们联合推出的「2021 强化学习系列课程」现已全部上线。该课程由 DeepMind 的研究科学家和工程师亲自讲授,旨在为学生提供对现代强化学习的全面介绍。课程
揭开深度强化学习的神秘面纱
编辑 | 萝卜皮深度强化学习是人工智能最有趣的分支之一。它是人工智能社区许多显着成就的基石,它在棋盘、视频游戏、自动驾驶、机器人硬件设计等领域击败了人类冠军。深度强化学习利用深度神经网络的学习能力,可以解决对于经典强化学习(RL)技术来说过于复杂的问题。深度强化学习比机器学习的其他分支要复杂得多。在这篇文章中,我们将尝试在不涉及技术细节的情况下,揭开它的神秘面纱。状态、奖励和行动每个强化学习问题的核心都是代理和环境。环境提供有关系统状态的信息。代理观察这些状态并通过采取行动与环境交互。动作可以是离散的(例如,拨动开
生物技术初创Lumen与谷歌合作,用机器学习让螺旋藻蛋白生产力翻倍
编辑/凯霞机器学习可以促进基于藻类的生物制剂生产吗?8 月 11 日,西雅图生物技术初创公司 Lumen Bioscience (以下简称「Lumen」)与谷歌宣布合作,将利用机器学习来推进基于螺旋藻(一种蓝绿藻)的药物开发。Lumen 表示,该研究由 Lumen 的信息学负责人 Caitlin Gamble 和谷歌加速科学工程师 Drew Bryant 领导。Lumen 联合创始人 Jim Roberts 说:「谷歌的机器学习和我们基于螺旋藻疗法生产的开创性结合,让我们更接近于一种完全优化的方法,这种方法可能对全