Umol
成功率超越RoseTTAFold系列,用序列信息直接预测蛋白质-配体复合物结构
编辑 | 萝卜皮蛋白质-配体对接是药物发现和开发中一种成熟的工具,用于缩小实验测试的潜在治疗范围。然而,高质量的蛋白质结构是必需的,而且蛋白质通常被视为完全或部分刚性的。在这里,柏林自由大学(Freie Universität Berlin)的研究人员开发了一个人工智能系统,可以直接从序列信息预测蛋白质-配体复合物的完全柔性全原子结构。虽然经典对接方法仍然更胜一筹,但这也取决于目标蛋白质的晶体结构。除了预测灵活的全原子结构外,预测置信度指标 (plDDT) 还可用于选择准确的预测,以及区分强结合剂和弱结合剂。该研究
6/18/2024 6:29:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
英伟达
GPU
AI for Science
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
深度学习
百度
驾驶
AI视频
文本
苹果
搜索
神器推荐
算力
LLaMA
Copilot
安全
科技
xAI
视频生成
应用
字节跳动
干货合集
人形机器人
2024
具身智能
特斯拉
视觉
亚马逊
语音
大语言模型
AGI
Claude
AI应用场景