Umol

成功率超越RoseTTAFold系列,用序列信息直接预测蛋白质-配体复合物结构

编辑 | 萝卜皮蛋白质-配体对接是药物发现和开发中一种成熟的工具,用于缩小实验测试的潜在治疗范围。然而,高质量的蛋白质结构是必需的,而且蛋白质通常被视为完全或部分刚性的。在这里,柏林自由大学(Freie Universität Berlin)的研究人员开发了一个人工智能系统,可以直接从序列信息预测蛋白质-配体复合物的完全柔性全原子结构。虽然经典对接方法仍然更胜一筹,但这也取决于目标蛋白质的晶体结构。除了预测灵活的全原子结构外,预测置信度指标 (plDDT) 还可用于选择准确的预测,以及区分强结合剂和弱结合剂。该研究
  • 1