数据

你的自拍和聊天记录,正被硅谷大厂砸数十亿美元疯抢

新智元报道  编辑:Aeneas 好困【新智元导读】2026 年的数据荒越来越近,硅谷大厂们已经为 AI 训练数据抢疯了!它们纷纷豪掷十数亿美元,希望把犄角旮旯里的照片、视频、聊天记录都给挖出来。不过,如果有一天 AI 忽然吐出了我们的自拍照或者隐私聊天,该怎么办?谁能想到,我们多年前的聊天记录、社交媒体上的陈年照片,忽然变得价值连城,被大科技公司争相疯抢。现在,硅谷大厂们已经纷纷出动,买下所有能购买版权的互联网数据,这架势简直要抢破头了!图像托管网站 Photobucket 的陈年旧数据,本来已经多年无人问津,但

报告称 OpenAI 采集了超一百万小时的 YouTube 视频来训练 GPT-4

本周早些时候,《华尔街日报》报道称 AI 公司在收集高质量训练数据方面遇到了困难。今天,《纽约时报》详细介绍了 AI 公司处理此问题的一些方法,其中涉及到属于 AI 版权法模糊灰色区域的内容。报道称,OpenAI 迫切需要训练数据,并开发了 Whisper 音频转录模型来克服困难,转录了超过 100 万小时的 YouTube 视频来训练其最先进的大型语言模型 GPT-4。报道提到,OpenAI 在 2021 年耗尽了有用的数据供应,并在耗尽其他资源后讨论了转录 YouTube 视频、播客和有声读物的可行性。此外,O

弱智吧竟成最佳中文 AI 训练数据?中科院等:8 项测试第一,远超知乎豆瓣小红书

离大谱了,弱智吧登上正经 AI 论文,还成了最好的中文训练数据??具体来说,使用弱智吧数据训练的大模型,跑分超过百科、知乎、豆瓣、小红书等平台,甚至是研究团队精心挑选的数据集。在问答、头脑风暴、分类、生成、总结、提取等 8 项测试中取得最高分。没错,论文中的 Ruozhiba 就是指百度贴吧弱智吧,一个充满荒谬、离奇、不合常理发言的中文社区,画风通常是这样的:最离谱的是,弱智吧 AI 代码能力也超过了使用专业技术问答社区思否数据训练的 AI,这下吧友自己都闹不明白了。其他平台围观网友也纷纷蚌埠住。这项研究来自中科院

联合国际顶尖高校 昆仑万维开源数字智能体研发工具包AgentStudio

AgentStudio旨在为研究人员和开发者提供一个覆盖智能体完整开发流程的综合性平台,让开发者们能够轻松、高效、灵活地构建专属数字智能体。

可用于训练“常见皮肤疾病”AI,谷歌推出 SCIN 数据集

谷歌官方新闻稿,谷歌近日与斯坦福大学医学院合作,收集了涵盖各种肤色、身体部位皮肤疾病照片,整合而成一款用于 AI 训练的“SCIN 数据集”,该数据集号称“完全使用志愿者利用网络提交的照片”,因此号称可以“反映出人们常见的皮肤问题”。▲ 图源 谷歌官方新闻稿(下同)谷歌提到,业界许多医疗专用的皮肤科影像数据集中通常为“重大疾病”,例如人们常见的皮疹、过敏、感染等照片通常不会在数据集中,因此对于应擅长判定人们日常疾病的 AI 模型使用业界常用的医疗专业数据集做训练反而有所缺憾。而谷歌目前推出的 SCIN 数据集收录了

腾讯AI Lab 3篇蛋白质组论文入选国际顶级期刊,为阐释生命提供重要技术参考

编辑 | ScienceAI只有蛋白质组才能从根本上阐释生命。3月20日,腾讯 AI Lab实验室3篇蛋白质组论文相继入选国际顶级学术期刊,论文分别在蛋白质组的检测、分析以及探索发现方面提出全新的研究方案,为人类从根本上阐释生命提供重要技术参考。科学界曾经认为,只要绘制出人类基因组序列图,就能了解疾病的根源,但事实并非如此。相同的基因往往有不同的表达,比如,人体不同组织器官的基因组是一样的,但是各个组织器官的蛋白质组不完全一样。人和鼠的基因组的差别仅为1%,但是其形态、性状差别非常大,这就是蛋白质组不一样的体现。中

大模型增速远超摩尔定律!MIT 最新研究:人类快要喂不饱 AI 了

【新智元导读】近日,来自 MIT (麻省理工学院)的研究人员发表了关于大模型能力增速的研究,结果表明,LLM 的能力大约每 8 个月就会翻一倍,速度远超摩尔定律!硬件马上就要跟不上啦!我们人类可能要养不起 AI 了!近日,来自 MIT FutureTech 的研究人员发表了一项关于大模型能力增长速度的研究,结果表明:LLM 的能力大约每 8 个月就会翻一倍,速度远超摩尔定律!论文地址: 的能力提升大部分来自于算力,而摩尔定律代表着硬件算力的发展,—— 也就是说,随着时间的推移,终有一天我们将无法满足 LLM 所需要

OpenAI 首席技术官:不确定 Sora 的训练数据来自哪里

感谢OpenAI 近期推出了炙手可热的文本转视频生成模型 Sora,然而该公司首席技术官 (CTO) Mira Murati 在接受华尔街日报采访时却语焉不详,无法明确说明 Sora 的训练数据来源。在采访中,记者直接询问 Murati 关于 Sora 训练数据来源时,她仅以含糊的官方话术搪塞:“我们使用的是公开可用数据和许可数据。”当记者追问具体来源是否包含 YouTube 视频时,Murati 竟然表示“我实际上并不确定(I'm actually not sure about that)”,并拒绝回答有关 In

LLaMA-2-7B数学能力上限已达97.7%?Xwin-Math利用合成数据解锁潜力

合成数据持续解锁大模型的数学推理潜力!数学问题解决能力一直被视为衡量语言模型智能水平的重要指标。通常只有规模极大的模型或经过大量数学相关预训练的模型才能有机会在数学问题上表现出色。近日,一项由 Swin-Transformer 团队打造,来自西安交通大学、中国科学技术大学、清华大学和微软亚洲研究院的学者共同完成的研究工作 Xwin 颠覆了这一认知,揭示了通用预训练下 7B(即 70 亿参数)规模的语言模型(LLaMA-2-7B)在数学问题解决方面已经展现出较强的潜力,并可使用基于合成数据的有监督微调方法促使模型愈发

星尘数据MorningStar正式发布!狙击“数据债”成最大看点

3月11日,AI数据技术公司星尘数据(Stardust AI)正式发布MorningStar——一款面向AI的数据闭环产品。 MorningStar是目前首个专注数据价值发现的AI数据平台,基于DataOps的理念打造,全面覆盖AI算法从训练到生产全链路中的数据发现、管理、协作、迭代等各个环节。  ▲MorningStar正式发布数据技术已经推动了人工智能的三次变革。

更全面、更准确的方法,佐治亚理工学院团队用DL对scRNA-seq数据进行批次效应和条件效应建模

编辑 | 萝卜皮单细胞 RNA 测序 (scRNA-seq) 已广泛用于疾病研究,其中在不同条件下(包括人口群体、疾病阶段和药物治疗)从捐赠者中收集样本批次。值得注意的是,此类研究中样本批次之间的差异是批次效应引起的技术混杂因素和条件效应引起的生物变异的混合体。但是,当前的去除批次效应方法往往同时消除技术批次效应和有意义的条件效应,而扰动预测方法仅关注条件效应,导致由于未考虑批次效应而导致基因表达预测不准确。在最新的研究中,佐治亚理工学院(Georgia Institute of Technology,GT)的研究

OpenAI 视频生成服务 Sora 引发隐私担忧,意大利数据监管机构展开调查

感谢意大利数据保护机构 (Garante) 周五宣布,已对微软支持的 OpenAI 公司开发的一项服务展开调查,这个名为 Sora 的服务可以根据文本提示生成视频。监管机构要求 OpenAI 澄清其向用户和非用户告知其产品 Sora 使用的数据的方式是否符合欧盟法规。OpenAI 公司暂未对此事发表评论。意大利数据监管机构是欧盟国家中最为积极的监管机构之一,一直致力于评估人工智能平台是否符合欧盟的数据隐私法规。IT之家注意到,去年该机构就以涉嫌违规使用用户数据为由,禁止了聊天机器人 ChatGPT 在意大利的使用。

想搞AI,高中别学数据科学:奥特曼、马斯克此刻终于一致了

高中阶段学习数据科学能不能代替数学,这个话题的讨论已经延伸到了 AI 圈。为了 AI 的发展,再不加强基础教育就晚了。在大模型技术高速发展,各家公司激烈竞争的同时,有人站出来对于未来的人才表示了担忧,焦点在于数学。近日,加州大学(UC)系统对于入学新生设立数学基础标准的消息掀起了轩然大波。随着全国范围内数学成绩的下降,一些教育工作者认为,标准的代数密集型数学教育需要改革,既可以吸引更多的学生,也可以帮助他们在日益依赖数据的未来培养相关技能。有组织称,目前至少有 17 个州已把「数据科学」作为高中数学教育的可选项,俄

可多模态数据集成、插补和跨模态生成,中科院&树兰医院&北师大团队开发带有掩码模块的深度生成框架

编辑 | 红菜苔随着单细胞技术的发展,许多细胞特性可以被测量。此外,多组学分析技术可以同时联合测量单个细胞中的两个或多个特征。为了快速处理积累的各种数据,需要多模态数据集成的计算方法。树兰医院、中国科学院和北京师范大学的合作团队提出了 inClust ,一个用于多组学分析的深度生成框架。它建立在之前针对转录组数据所开发的 inClust 的基础上,并增加了两个专为多模式数据处理设计的掩码模块:编码器前面的输入掩码模块和解码器后面的输出掩码模块。InClust 可用于整合来自相似细胞群的 scRNA-seq 和 M

ICLR2024 | Harvard FairSeg: 第一个研究分割算法公平性的大型医疗分割数据集

作者 | 田宇编辑 | 白菜叶近年来,人工智能模型的公平性问题受到了越来越多的关注,尤其是在医学领域,因为医学模型的公平性对人们的健康和生命至关重要。高质量的医学公平性数据集对促进公平学习研究非常必要。现有的医学公平性数据集都是针对分类任务的,而没有可用于医学分割的公平性数据集,但是医学分割与分类一样都是非常重要的医学 AI 任务,在某些场景分割甚至优于分类,因为它能够提供待临床医生评估的器官异常的详细空间信息。在最新的研究中,哈佛大学(Harvard University)的Harvard-Ophthalmolo

2023京东零售技术年度盘点

过去一年,围绕开放生态建设、低价心智等主要方向,京东零售技术团队持续攻坚。从百亿补贴、调整流量分配机制为用户提供低价品质好货,到简化商家进驻流程、优化商家体验,带动商家数量增长和平台生态活跃,再到将大模型结合到内部大量业务场景,探索效率提升……快速响应、助力业务的同时,京东零售技术团队继续夯实增强自身能力、探索创新。我们选取了11项有代表性的技术成果,与大家分享。供应链创新技术入围行业最高奖项 京东长期致力于通过前沿的数智化技术和算法,提高供应链效率。2023年,智能供应链团队提出并应用了端到端库存管理技术和可解释

OpenLAM | 深度势能预训练大模型DPA-2发布

在迈向通用大原子模型(Large Atomic Model,LAM)的征途上,深度势能核心开发者团队面向社区,发起 OpenLAM 大原子模型计划。OpenLAM 的口号是“征服元素周期表!”,希望通过建立开源开放的围绕微尺度大模型的生态,为微观科学研究提供新的基础设施,并推动材料、能源、生物制药等领域微尺度工业设计的变革。经过北京科学智能研究院、深势科技、北京应用物理与计算数学研究所等 29 家单位的 42 位合作者的通力协作,深度势能团队近日面向社区发布了深度势能预训练大模型 DPA-2,将成为 OpenLAM

华东政法数据法律研究中心、蚂蚁集团等发布《数据跨域管控白皮书》

12月27日,在“第六届中国数据法律高峰论坛”上,《数据跨域管控白皮书》(以下简称“白皮书”)正式发布。该白皮书由华东政法大学数据法律研究中心、蚂蚁集团牵头,华控清交、华为云、中电数创、广州数据交易所等单位联合参与。白皮书首次系统化给出了数据跨域管控的实操指引,是行业积极响应国家数据流通政策,共同应对数据滥用、数据泄露、责任不清等数据流通风险挑战,助力数据价值释放的重要成果。 (《数据跨域管控白皮书》发布,参编单位代表及嘉宾共同见证)我国已将数据列为重要生产要素,并且鼓励数据要素流通。12月8日,国家数据局局长刘烈