深度神经网络

超衍射极限1.5倍,成像条件低10倍,清华、中国科学院用AI方法提高显微镜分辨率

图示:通过 ZS-DeconvNet 对快速光敏生物过程进行长期 SR 成像。(来源:论文)编辑 | 萝卜皮计算超分辨率方法,包括传统的分析算法和深度学习模型,极大地改进了光学显微镜。其中,有监督深度神经网络表现出了出色的性能,但由于活细胞的高动态性,需要大量的高质量训练数据,而获取这些数据非常费力甚至不切实际。在最新的研究中,清华大学和中国科学院的研究人员开发了零样本反卷积网络(Zero-shot deconvolution networks,ZS-DeconvNet),可立即将显微镜图像的分辨率提高超过衍射极限
  • 1