MetaDiff
MetaDiff:用扩散模型重塑元学习,攻克小样本学习瓶颈!
一眼概览MetaDiff 提出了一种基于条件扩散模型的创新元学习方法,通过将梯度下降优化建模为去噪过程,有效提升了小样本学习(FSL)的性能,显著减少了内循环优化中的内存负担和梯度消失风险。 核心问题小样本学习的主要挑战在于:如何在训练数据有限的情况下快速适应新任务,而不引入过拟合或内存瓶颈。 传统基于梯度的元学习方法需要计算内循环路径上的二阶导数,导致内存消耗高和梯度消失问题,从而影响性能。
1/27/2025 12:57:43 AM
萍哥学AI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
ChatGPT
AI
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
智能
Midjourney
用户
学习
模型
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
GPU
AI for Science
英伟达
机器学习
场景
伟达
预测
华为
Transformer
模态
Anthropic
百度
驾驶
深度学习
文本
AI视频
苹果
搜索
神器推荐
算力
LLaMA
科技
视频生成
安全
应用
xAI
干货合集
Copilot
2024
字节跳动
特斯拉
人形机器人
具身智能
亚马逊
语音
视觉
AI应用场景
写作
AGI
Claude