化学
Nature重磅:微软生成式AI材料设计工具,稳定性提升2倍,实验验证误差低于20%!
编辑 | 2049材料创新是推动技术进步的关键驱动力之一。 从 20 世纪 80 年代锂钴氧化物的发现到如今的锂离子电池技术,材料科学的每一次突破都深刻影响着我们的日常生活。 然而,传统的材料发现方法依赖于耗时且昂贵的实验试错过程,而计算筛选方法虽然加速了这一过程,但仍然受限于已知材料的数量。
2024 诺贝尔化学奖得主:「模型幻觉」给我无限创造力
万万没想到,一直备受批评的 AI「幻觉」问题,竟然在科学领域具有极大的应用价值?
AI赋能传统力场:字节跳动开发高精度通用小分子力场ByteFF
编辑 | ScienceAI小分子力场是药物发现中的重要工具,在计算机辅助药物设计中发挥关键作用。 化学空间覆盖广泛且高效精确的小分子力场将为药物发现奠定可靠的基础。 尽管基于机器学习的 MLFF(如 ANI-2x,MACE-OFF23 等)能够提供非常精确的小分子势能面预测,但它们的训练需要海量数据量,且推理速度较慢,还存在外推场景不确定度大等问题。
AI 驱动科学大爆发!从蛋白质到数学证明,2024 年最值得关注的科技突破
编辑 | ScienceAI2024 年对于 AI for Science 而言,可谓硕果累累:两个诺贝尔奖再度聚焦人工智能与科学的先驱性结合。 其一是诺贝尔化学奖,颁发给了在蛋白质设计与蛋白质结构预测领域做出开创性贡献的 David Baker 博士、John Jumper 博士以及Demis Hassabis 博士;其二是诺贝尔物理学奖,授予了 John J. Hopfield 博士与 Geoffrey Hinton 博士,以表彰他们在人工神经网络及其机学习核心原理方面的奠基性工作。
ScienceAI 2024「AI+材料&化学」专题年度回顾
编辑 | 2049在数字化转型的背景下,人工智能技术正在从根本上改变化学与材料科学的研究范式。 2024年,这场技术革新在多个领域展现其变革力量。 在分子设计领域,基于图神经网络(GNN)和 Transformer 架构的深度学习模型,结合分子动力学模拟,实现了分子性质的精确预测与优化。
LLM学习原子「结构语言」,生成未知化合物的晶体结构,登Nature子刊
编辑 | 萝卜皮生成合理的晶体结构通常是预测材料化学成分及其性质的第一步,但当前大多数预测方法计算成本高,制约了创新进程。 通过使用优质生成的候选结构来预测晶体结构,可以突破这一瓶颈。 在最新的研究中,英国雷丁大学(University of Reading)的研究人员介绍了 CrystaLLM,这是一种基于晶体学信息文件 (CIF) 格式的自回归大型语言建模 (LLM) 的多功能晶体结构生成方法。
打破GNN与语言模型间壁垒,图辅助多模态预训练框架用于催化剂筛选,登Nature子刊
编辑 | KX吸附能是一种反应性描述符,必须准确预测,才能有效地将机器学习应用于催化剂筛选。 该过程涉及在催化表面上的不同吸附构型中找到最低能量。 尽管图神经网络在计算催化剂系统的能量方面表现出色,但它们严重依赖原子空间坐标。
AI 驱动化学空间探索,大语言模型精准导航,直达目标分子
作者 | 「深度原理」陆婕妤编辑 | ScienceAI现代科学研究中,化学空间的探索是化学发现和材料科学的核心挑战之一。 过渡金属配合物(TMCs)的设计中,由金属和配体组成的庞大化学空间为多目标优化的搜索带来了难度。 为了解决这一问题,来自「深度原理」 (Deep Principle) 和康奈尔大学的研究者们开发了一种名为 LLM-EO(Large Language Model for Evolutionary Optimization)的新型工作流程算法,释放大型语言模型(LLM)的生成和预测潜能,显著提高了化学空间探索的效率。
成功率提升15%,浙大、碳硅智慧用LLM进行多属性分子优化,登Nature子刊
编辑 | 萝卜皮优化候选分子的物理化学和功能特性一直是药物和材料设计中的一项关键任务。 虽然人工智能很适合处理平衡多个(可能相互冲突的)优化目标的任务,但是例如多属性标记训练数据的稀疏性等技术挑战,长期以来阻碍了解决方案的开发。 在最新的研究中,浙江大学侯廷军团队、中南大学曹东升团队以及碳硅智慧团队联合开发了一种分子优化工具 Prompt-MolOpt。
化学空间导航仪:流生成式AI引导分子属性控制
作者 | 康奈尔大学魏光浩编辑 | ScienceAI分子设计是药物发现和材料科学中的一个核心挑战。目前,潜在可行的药物类小分子化合物的数量估计在10^23到10^60之间。这意味着即使使用最先进的计算方法,也无法穷举地搜索所有可能的分子结构。
中国科大、科大讯飞团队开发ChemEval:化学大模型多层次多维度能力评估的新基准
编辑 | ScienceAI近日,认知智能全国重点实验室、中国科学技术大学陈恩红教授团队,科大讯飞研究院 AI for Science 团队发布了论文《ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models》,介绍了新研发的一个面向化学领域大模型能力的多层次多维度评估框架 ChemEval。论文链接: : (NLP)的领域中,大语言模型(LLMs)已经成为推动语言理解与生成能力不断进步的强大引擎。随着这些
筛选数十亿化合物库,华盛顿大学药物AI虚拟筛选平台,登Nature子刊
编辑 | KX基于结构的虚拟筛选在药物发现中发挥着重要作用,科学家对数十亿种化合物库的筛选越来越感兴趣。但只有少数的筛选取得成功,此外,对于基于物理的对接方法而言,对整个超大型库进行虚拟筛选耗时且成本高昂。基于此,华盛顿大学研究团队开发了一种高度准确的基于结构的虚拟筛选方法 RosettaVS,用于预测对接姿势和结合亲和力。RosettaVS 在广泛的基准测试中优于其他最先进的方法。研究人员将其整合到一个新的开源 AI 加速虚拟筛选平台中,用于药物发现。利用这个平台,针对两个不相关的靶标,即泛素连接酶靶标 KLHD
打开AI黑匣子,「三段式」AI用于化学研究,优化分子同时产生新化学知识,登Nature
编辑 | KXAI 工具的强大功能,令人难以置信。但如果你试图打开引擎盖并了解它们在做什么,你通常会一无所获。AI 常常被视为「黑匣子」。对于化学来说,AI 可以帮助我们优化分子,但它无法告诉我们为什么这是最佳的——重要的特性、结构和功能是什么?近日,伊利诺伊大学厄巴纳-香槟分校(UIUC)的一个跨学科研究团队打开了黑匣子,研究人员通过将 AI 与自动化学合成和实验验证相结合,找到了 AI 所依赖的化学原理,从而改进用于收集太阳能的分子。研究找到了比现有稳定四倍的捕光分子,同时给出了使其保持稳定的重要见解 ——这是
「两全其美」,从头设计分子,深度学习架构S4用于化学语言建模
编辑 | KX生成式深度学习正在重塑药物设计。化学语言模型 (CLM) 以分子串的形式生成分子,对这一过程尤为重要。近日,来自荷兰埃因霍芬理工大学(Eindhoven University of Technology)的研究人员将一种最新的深度学习架构(S4)引入到从头药物设计中。结构化状态空间序列(Structured State Space Sequence,S4)模型在学习序列的全局属性方面表现卓越,那么 S4 能否推进从头设计的化学语言建模?为了给出答案,研究人员系统地在一系列药物发现任务上对 S4 与最先
DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗
编辑 | X近百年前,狄拉克提出正电子概念,如今在医学物理、天体物理及材料科学等多个领域都具有技术相关性。然而,正电子-分子复合物基态性质的量子化学计算具有挑战性。在此,DeepMind 和伦敦帝国理工学院的研究人员,使用最近开发的费米子神经网络 (FermiNet) 波函数来解决这个问题,该波函数不依赖于基组。研究发现 FermiNet 可以在一系列具有各种不同定性正电子结合特性的原子和小分子中产生高度精确的、在某些情况下是最先进的基态能量。研究人员计算了具有挑战性的非极性苯分子的结合能,发现与实验值高度一致,并
探索复合材料中的原子扩散,加州大学开发神经网络动力学方法
编辑 | 绿罗就像随风扩散、扑面而来的花香,材料中的原子与分子也在进行着它们的「扩散」。材料中的扩散决定了沉淀、新相形成和微观结构演化的动力学,并强烈影响机械和物理性能。成分复杂的材料固有的化学复杂性,给原子扩散建模和化学有序结构的形成带来了挑战。在此,加州大学的研究人员提出了一种神经网络动力学(NNK)方法,用于预测成分复杂材料中的原子扩散,及其由此产生的微观结构演化。该框架基于高效的晶格结构和化学表征,结合人工神经网络,能够精确预测所有依赖于路径的迁移势垒和单个原子跳跃。可扩展的 NNK 框架为探索隐藏着非凡属
化学能力超GPT-4,首个化学领域百亿级大模型,思必驰、上交大、苏州实验室联合发布
编辑 | ScienceAI2024年3月12日,思必驰-上海交大智能人机交互联合实验室、苏州实验室共同发布了首个针对化学科学的百亿级专业化大模型ChemDFM。模型参数现已完全开源以帮助和促进大模型辅助化学科研领域的相关研究()。此外,ChemDFM的研究论文也已作为相关领域的第一篇研究论文于arXiv预印本网站上公开发表。论文链接:,引入了海量的化学基础与前沿知识,充分学习并掌握化学科学的专有语言与表达方式,最终以130亿的参数量在大多数化学相关的能力上超越了公认最强大的模型GPT-4。此外,在进一步的评测中C
Nature 子刊 | 动态可编程系统,能够制造、优化和发现新分子
编辑 | X化学机器人平台正在迅速发展,但大多数系统目前无法适应实时变化的环境。近日,来自英国格拉斯哥大学(The University of Glasgow)的研究人员提出了一个动态可编程系统,能够制造、优化和发现新分子,该系统利用七个传感器连续监测反应。通过开发动态编程语言,研究展示高放热氧化反应、终点检测以及关键硬件故障检测的 10 倍放大。还展示了如何使用在线光谱(例如 HPLC、拉曼和 NMR)进行反应的闭环优化。从选定的化学空间中发现的两个先前未报告的反应,在 25-50 次迭代中实现高达 50% 的产