资讯列表

解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉Transformer

来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer,即 Next-ViT。Next-ViT 能像 CNN 一样快速推断,并有 ViT 一样强大的性能。

科研产业即将迎来AI赋能拐点

「机器之心2021-2022年度AI趋势大咖说」聚焦「驱动未来的AI技术」与「重塑产业的AI科技」,推出线上分享,共邀请近40位AI领域知名学者、产业专家及企业高管通过主题分享及多人圆桌等形式,与行业精英、读者、观众共同回顾 2021年中的重要技术和学术热点,盘点AI产业的年度研究方向以及重大科技突破,展望2022年度AI技术发展方向、AI技术与产业科技融合趋势。

可信AI的驱动力——隐私计算

「机器之心2021-2022年度AI趋势大咖说」聚焦「驱动未来的AI技术」与「重塑产业的AI科技」,推出线上分享,共邀请近40位AI领域知名学者、产业专家及企业高管通过主题分享及多人圆桌等形式,与行业精英、读者、观众共同回顾 2021年中的重要技术和学术热点,盘点AI产业的年度研究方向以及重大科技突破,展望2022年度AI技术发展方向、AI技术与产业科技融合趋势。

ICML2022奖项公布:15篇杰出论文,复旦、厦大、上交大研究入选

ICML2022 共评选出 15 篇杰出论文和一篇时间检验奖论文。

深度剖析|可信AI 征途中的技术实践与应用机遇

「机器之心2021-2022年度AI趋势大咖说」聚焦「驱动未来的AI技术」与「重塑产业的AI科技」,推出线上分享,共邀请近40位AI领域知名学者、产业专家及企业高管通过主题分享及多人圆桌等形式,与行业精英、读者、观众共同回顾 2021年中的重要技术和学术热点,盘点AI产业的年度研究方向以及重大科技突破,展望2022年度AI技术发展方向、AI技术与产业科技融合趋势。

Creator 面对面 | 听「学长」唠唠读完博士后的故事

博士毕业或只是科研生涯的起点,下一程是留在学界、去向业界,还是出发创业?

Creator 面对面 | 大模型的最后一公里路“不太平”

自 2018 年谷歌推出 BERT 以来,语言模型就开始朝着「大模型」的方向演进。21 年诸如华为联合鹏城实验室 2000 亿参数的盘古、谷歌 1.6 万亿参数的 Switch Transfomer、智源研究院 1.75 万亿参数的的悟道 2.0 等相继产出。

谷歌请印度标注员给Reddit评论数据集打标签,错误率高达30%?

去年,谷歌发布了 GoEmotions 数据集,该数据集包含 58K 人工标注的 Reddit 评论,其中涉及 27 种情绪。

行业现状令人失望,工作之后我又回到UC伯克利读博了

机器学习领域近来受到大模型的冲击,很多小公司表示难以承担大模型的训练费用。但行业中机器学习工程的发展具体是怎样的?

Creator 面对面 | 如何突破 AI 实践中的资源限制与壁垒?

AI 的实际应用尚处于早期,对于大多的AI开发者来说,「从无到有」比「从有到优」要重要得多。能在有限的资源下跑通业务流程,比跑得姿态优雅要更重要,模型精度虽然是越准确越好,但当精度达到可用需求之后,精度就不再起决定性作用。

ICLR 2022 | 基于心智理论的多智能体通信与合作

本文是 ICLR 2022入选论文《ToM2C: Target-oriented Multi-agent Communication and Cooperation with Theory of Mind》的解读。该论文由北京大学王亦洲课题组完成。文章提出了一种基于心智理论的多智能体通信与合作方法。每个智能体基于对他人心理状态的推测独立地选择通信对象和个体行动,进而实现分布式的合作。实验表明该方法提高了多智能体合作的成功率,大幅降低了通信代价,并且具有良好的泛化性能。

FC 2022 | 基于博弈论分析的非同质化代币证券化与回购市场

本文是 FC 2022入选论文《ABSNFT: Securitization and Repurchase Scheme for Non-Fungible Tokens Based on Game Theoretical Analysis》的解读。该论文为北京大学前沿计算研究中心算法博弈论实验室2021年暑期夏令营的科研结果,指导老师为北京大学前沿计算研究中心邓小铁教授和苏州科技大学程郁琨教授。文章提出了一种将区块链上的非同质化代币(Non-Fungible Token, NFT)进行证券化与回购的方案,并基于博弈论对该方案进行理论分析。

CVPR 2022 | 多机器人协同主动建图算法

本文是 CVPR 2022入选论文《Multi-Robot Active Mapping via Neural Bipartite Graph Matching》的解读。该论文由北京大学陈宝权研究团队与山东大学、腾讯AI Lab、清华大学、斯坦福大学合作,将传统方法与机器学习相结合,提出了多机器人协同主动建图算法 NeuralCoMapping,实现了室内场景完整地图的高效构建。 实验证明,相比于其他多机协同建图算法,NeuralCoMapping 在时间效率上具有显著优势,而且在多种未知场景和不同数量机器人上表现出卓越的泛化能力。

ICLR 2022 | 操作3D铰接物体的视觉操作轨迹学习

本文是 ICLR 2022入选论文《VAT-Mart: Learning Visual Action Trajectory Proposals for Manipulating 3D ARTiculated Objects》的解读。该论文由北京大学前沿计算研究中心董豪课题组与斯坦福大学、腾讯人工智能实验室合作完成。文章提出了一种新型的物体功能可操作性表示,设计了一个通过交互进行感知学习的框架以学习这个表示,并在多样的物体上完成操作任务。

FOCS 2021 | 针对Insdel距离的局部可解码编码的下界

近日,北京大学前沿计算研究中心助理教授程宽博士与其合作者的论文“Exponential Lower Bounds for Locally Decodable and Correctable Codes for Insertions and Deletions”发表在理论计算机科学国际顶级会议 FOCS 2021上。这篇文章探讨了编码理论中的一个重要问题,Locally Decodable Code 在 insertion deletion distance 场景下的下界。

墨芯首席科学家严恩勖:为什么说稀疏化是AI计算的未来

主讲人:严恩勖墨芯人工智能联合创始人 & 首席科学家卡内基梅隆大学 机器学习博士神经网络动态稀疏算法发明者视频简介:10年前,AI计算优化大多着重在优化算法的计算复杂度上,近年来随着AI产业化,AI计算优化更多注重在硬件的算力提升上。当前,硬件所能带来的算力提升已逼近极限,AI优化计算的未来将是算法与硬件架构的协同优化,以及构建相应的软件生态。稀疏化计算,带来数量级的算力提升,将成为未来AI计算优化的领航者。视频内容:

CVPR 2021 | 时间序列疾病预测的因果隐马尔可夫模型

本文是对发表于计算机视觉和模式识别领域的顶级会议 CVPR 2021的论文“Causal Hidden Markov Model for Time Series Disease Forecasting(时间序列疾病预测的因果隐马尔可夫模型)”的解读。 该论文由北京大学王亦洲课题组与深睿医疗等单位合作,针对时间序列疾病预测的问题,提出了因果隐马尔可夫模型描述疾病的动态发展过程,并使用基于 VAE 的变分框架进行学习。通过对图像隐空间进行解耦,去除疾病无关因子与疾病预测的伪相关关系,从而提高预测的准确率和鲁棒性。

ICML 2021 | 基于装配的视频无监督部件分割

本文是第三十八届国际机器学习会议(ICML 2021)入选论文《基于装配的视频无监督部件分割(Unsupervised Co-part Segmentation through Assembly)》的解读。 该论文由北京大学陈宝权-刘利斌研究团队与山东大学、北京电影学院未来影像高精尖创新中心合作,提出了一种无监督的图像部件分割方法,创新性地采用了将部件分割过程和部件装配过程相结合的自监督学习思路,利用视频中的运动信息来提取潜在的部件特征,从而实现对物体部件的有意义的分割。