Meta 发布基于 Code Llama 的 LLM 编译器:优化代码大小、反汇编

感谢Meta 官方在 X 平台宣布推出 LLM 编译器,这是一个基于 Meta Code Llama 构建的模型家族,具有额外的代码优化和编译器功能。这些模型可以模拟编译器,预测代码大小的最佳传递,并可反汇编代码,可以针对新的优化和编译器任务进行微调。Meta 在 HuggingFace 上公开了 LLM 编译器的 7B 和 13B 模型,采用宽松的许可协议,允许用于研究和商业用途。IT之家附链接:,LLM 在各种软件工程和编码任务中展示其能力,然而在代码和编译器优化领域的应用仍然未被充分探索。为了解决这一问题,M
感谢Meta 官方在 X 平台宣布推出 LLM 编译器,这是一个基于 Meta Code Llama 构建的模型家族,具有额外的代码优化和编译器功能。这些模型可以模拟编译器,预测代码大小的最佳传递,并可反汇编代码,可以针对新的优化和编译器任务进行微调。

Meta 发布基于 Code Llama 的 LLM 编译器:优化代码大小、反汇编

Meta 在 HuggingFace 上公开了 LLM 编译器的 7B 和 13B 模型,采用宽松的许可协议,允许用于研究和商业用途。

IT之家附链接:https://huggingface.co/collections/facebook/llm-compiler-667c5b05557fe99a9edd25cb

研究人员在论文中表示,LLM 在各种软件工程和编码任务中展示其能力,然而在代码和编译器优化领域的应用仍然未被充分探索。为了解决这一问题,Meta 引入了 LLM 编译器,这是一个专为代码优化任务设计的预训练模型套件。

LLM 编译器模型在包含 5460 亿个 LLVM-IR 和汇编代码标记的庞大语料库上进行了训练,并经过指令微调以解释编译器行为,旨在为学术研究人员和行业从业者在编译器优化方面的进一步研究和开发提供一个可扩展的、具有成本效益的基础。

LLM 编译器在代码大小优化方面取得了显著成果。在测试中,该模型的优化潜力达到了自动调整搜索的 77%,这一结果可以显著缩短编译时间,提高各种应用的代码效率。

相关资讯

Meta 推出 LLM Compiler 代码优化模型,可搭配其他 AI 改善代码生成 / 编译能力

Meta 前天推出了一款名为“LLM Compiler”的模型,该模型基于 Meta 现有的 Code Llama 打造,主打代码优化,目前相关模型已登陆 Hugging Face,提供 70 亿参数及 130 亿参数两个版本,允许学术及商业使用,IT之家附项目地址如下:点此访问。Meta 认为,尽管业界各大语言模型已在各种编程代码任务中展现了出色的能力,但此类模型在代码优化还有进步空间,目前推出的 LLM Compiler 模型便是一款专为优化代码任务设计的预训练模型,能够模拟编译器对代码进行优化,或将“已经过优

影响众多编程语言、引发供应链攻击,剑桥大学发布「木马源」漏洞

最近,剑桥大学的研究者公布了一种名为 Trojan-Source 漏洞,可能危及软件和第一手供应链。

阿里 BladeDISC 深度学习编译器正式开源

作者:朱凯 - 机器学习PAI团队 随着深度学习的不断发展,AI模型结构在快速演化,底层计算硬件技术更是层出不穷,对于广大开发者来说不仅要考虑如何在复杂多变的场景下有效的将算力发挥出来,还要应对计算框架的持续迭代。深度编译器就成了应对以上问题广受关注的技术方向,让用户仅需专注于上层模型开发,降低手工优化性能的人力开发成本,进一步压榨硬件性能空间。阿里云机器学习PAI开源了业内较早投入实际业务应用的动态shape深度学习编译器 BladeDISC,本文将详解 BladeDISC的设计原理和应用。BladeDISC是什