Hugging Face 最小 AI 视觉语言模型登场:2.56 亿参数,内存低于 1GB PC 也能驾驭

Hugging Face 平台昨日(1 月 23 日)发布博文,宣布推出 SmolVLM-256M-Instruct 和 SmolVLM-500M-Instruct 两款轻量级 AI 模型,在 AI 算力有限的设备上,最大限度发挥其算力性能。

Hugging Face 平台昨日(1 月 23 日)发布博文,宣布推出 SmolVLM-256M-Instruct 和 SmolVLM-500M-Instruct 两款轻量级 AI 模型,在 AI 算力有限的设备上,最大限度发挥其算力性能。

AI在线曾于 2024 年 11 月报道,Hugging Face 平台发布 SmolVLM AI 视觉语言模型(VLM),仅有 20 亿参数,用于设备端推理,凭借其极低的内存占用在同类模型中脱颖而出。

本次推出的 SmolVLM-256M-Instruct 仅有 2.56 亿参数,是有史以来发布的最小视觉语言模型,可以在内存低于 1GB 的 PC 上运行,提供卓越的性能输出。

SmolVLM-500M-Instruct 仅有 5 亿参数,主要针对硬件资源限制,帮助开发者迎接大规模数据分析挑战,实现 AI 处理效率和可访问性的突破。

Hugging Face 最小 AI 视觉语言模型登场:2.56 亿参数,内存低于 1GB PC 也能驾驭

SmolVLM 模型具备先进的多模态能力,可以执行图像描述、短视频分析以及回答关于 PDF 或科学图表的问题等任务。正如 Hugging Face 所解释的:“SmolVLM 构建可搜索数据库的速度更快、成本更低,其速度可媲美规模 10 倍于其自身的模型”。

模型的开发依赖于两个专有数据集:The Cauldron 和 Docmatix。The Cauldron 是一个包含 50 个高质量图像和文本数据集的精选集合,侧重于多模态学习,而 Docmatix 则专为文档理解而定制,将扫描文件与详细的标题配对以增强理解。

这两个模型采用更小的视觉编码器 SigLIP base patch-16/512,而不是 SmolVLM 2B 中使用的更大的 SigLIP 400M SO,通过优化图像标记的处理方式,减少了冗余并提高了模型处理复杂数据的能力。

SmolVLM 模型能够以每个标记 4096 像素的速率对图像进行编码,这比早期版本中每标记 1820 像素有了显著改进。

相关资讯

降低门槛,全平台应用,昇腾还会手把手地教你如何用AI

机器之心报道作者:泽南如何才能做到 AI 应用一次开发,全场景部署?昇腾给出了答案。如今的大多数 AI 应用程序都需要跑在多种类型的处理器上,覆盖数十个版本的操作系统,运行在从端侧到云计算集群的各种设备上。这样复杂的环境,对软件的适应性和模型的可裁剪、可伸缩性提出了极高要求。AI 开源框架也在顺应这股潮流,昇腾发布的 CANN、MindSpore、MindX 等工具,可以让开发者实现「统一端边云,全端自动部署」,开启了机器学习开发的新时代,一直被人们寄予厚望。昇腾的 AI 全栈软件平台。其中,基础架构作为连接硬件与

专家圆桌:“国产类 ChatGPT ”所存在的差距与挑战

内容来源:ChatGPT 及大模型专题研讨会 转载自CSDN稿件在经历寒冬、雾霾,甚至大家纷纷看不到希望之际,ChatGPT 犹如一场春雨,给做 AI 甚至 NLP 等研究的人带来了新的希望。3 月 11 日,由中国人工智能学会主办,中国人工智能学会 NLP 专委会、真格基金、达观数据共同承办,中国信通院云大所支持的「ChatGPT 及大模型专题研讨会」正式举行。在圆桌对话环节,来自学术界、产业界及投资界的知名专家学者,就 ChatGPT 引发的新 AI 浪潮、大模型“基础模型”论、“国产类 ChatGPT ”所存

ChatGPT在iOS美区下载火爆,6天内下载量超过 50 万次

Open AI ChatGPT正在美版iOS市场大杀四方。5月26日,根据App分析厂商Data.AI的消息,ChatGPT在推出后的六天内已经突破了50万次下载,成为美区最近两年内增长速度最快的新应用之一。与此同时,ChatGPT正在美区APP Store掀起一股AI聊天热潮,相关领域的一些消费欺诈也随着ChatGPT的火爆而出现。据TechCrunch报道,随着消费者热情不断高涨,许多其他自称为“ChatGPT”或“AI聊天机器人”的第三方应用也纷纷涌入App Store。其中许多其实本质上都是欺诈应用,试图欺