作者:lushen
一、系统介绍
mbp pro:
二、Ollama 安装与配置
1. 跨平台安装指南
Ollama 作为本地运行大模型的利器,支持三大主流操作系统:
复制# macOS一键安装 # Windows用户 访问官网 https://ollama.com/download 下载安装包 # Linux安装(Ubuntu/Debian为例) curl -fsSL https://ollama.com/install.sh | sudo bash sudo usermod -aG ollama $USER # 添加用户权限 sudo systemctl start ollama # 启动服务
2. 服务验证
复制ollama -v # 输出ollama version is 0.5.7
出现上述则表示安装成功,可浏览器访问http://localhost:11434/验证。
三、Deepseek 模型部署
1. 模型下载与加载
以 deepseek r1 模型为例:
(1) 访问https://ollama.com/library/deepseek-r1,默认为 7b 模型,如需其他模型,可以在当前页搜索所需模型
(2) 模型详情页复制安装命令ollama run deepseek-r1
(3) 安装完成后在终端执行:
复制ollama run deepseek-r1 # 执行后 pulling manifest pulling 96c415656d37... 100% ▕██████████████▏ 4.7 GB pulling 369ca498f347... 100% ▕██████████████▏ 387 B pulling 6e4c38e1172f... 100% ▕██████████████▏ 1.1 KB pulling f4d24e9138dd... 100% ▕██████████████▏ 148 B pulling 40fb844194b2... 100% ▕██████████████▏ 487 B verifying sha256 digest writing manifest success > > > Send a message (/? for help) > > > ` > > > 当看到上述提示,即可开始模型对话。
- mac 后台标识
- win 后台标识见任务栏托盘区
2. 模型验证测试
运行交互式对话测试:
复制请用Python写一个快速排序算法
当看到完整代码输出,说明模型已成功加载。
硬件要求建议:
- 最低配置:16GB 内存 + 8GB 显存
- 推荐配置:32GB 内存 + 16GB 显存(RTX 3060 级别)
四、安装交互 ui
1. chatbox
(1) 下载地址chatboxai.app
(2) 配置本地模型
- 进入设置页面
- 选择 ollama api (本地部署)
- 配置本机地址,默认http://127.0.0.1:11434
至此即可开启问答模式。
2. Page Assist 浏览器插件
- 安装地址Page Assist - 本地 AI 模型的 Web UI
- 安装后简单配置即可开启问答模式,功能丰富,可以参考官方引导
- 本插件支持本地知识库建设,因本次使用 Dify 建设,在此不赘述。
五、Dify 知识库搭建
参考文档地址Docker Compose 部署
1. 环境准备
(1) 拉取源代码,准备环境
复制# mac os # 克隆 Dify 源代码至本地环境。 git clone https://github.com/langgenius/dify.git # 进入 Dify 源代码的 Docker 目录 cd dify/docker # 复制环境配置文件 cp .env.example .env
(2) 启动 Docker 容器(需要先安装 D ocker)
复制docker compose up -d # 如果版本是 Docker Compose V1,使用以下命令: docker-compose up -d # 正常返回 [+] Running 74/9 ✔ db Pulled 834.2s ✔ sandbox Pulled 1120.7s ✔ weaviate Pulled 526.5s ✔ web Pulled 174.0s ✔ redis Pulled 893.7s ✔ api Pulled 2919.8s ✔ worker Pulled 2919.8s ✔ ssrf_proxy Pulled 494.0s ✔ nginx Pulled 184.7s [+] Running 11/11 ✔ Network docker_default Created 0.0s ✔ Network docker_ssrf_proxy_network Created 0.0s ✔ Container docker-db-1 Started 1.1s ✔ Container docker-web-1 Started 1.1s ✔ Container docker-redis-1 Started 1.1s ✔ Container docker-sandbox-1 Started 1.1s ✔ Container docker-weaviate-1 Started 1.1s ✔ Container docker-ssrf_proxy-1 Started 1.1s ✔ Container docker-api-1 Started 0.7s ✔ Container docker-worker-1 Started 0.7s ✔ Container docker-nginx-1 Started 0.8s
在此阶段可能会遇到下列失败的情况,可以尝试切换源解决我当时的条件。
- 修改配置后重启 docker
- 办公网环境下
docker compose up -d [+] Running 9/9 ✘ web Error context canceled 14.9s ✘ redis Error context canceled 14.9s ✘ db Error context canceled 14.9s ✘ nginx Error context canceled 14.9s ✘ ssrf_proxy Error context canceled 14.9s ✘ sandbox Error Head "https://registry-1.do... 14.9s ✘ api Error context canceled 14.9s ✘ worker Error context canceled 14.9s ✘ weaviate Error context canceled 14.9s Error response from daemon: Head "https://registry-1.docker.io/v2/langgenius/dify-sandbox/manifests/0.2.10": Get "https://auth.docker.io/token?scope=repository%3Alanggenius%2Fdify-sandbox%3Apull&service=registry.docker.io": EOF
解决方法:
- 右上角齿轮图标进入设置 -> Docker engine,在配置中添加
- 写入以下内容 ocker)
{ // ... "registry-mirrors": [ "https://docker.hpcloud.cloud", "https://docker.m.daocloud.io", "https://docker.unsee.tech", "https://docker.1panel.live", "http://mirrors.ustc.edu.cn", "https://docker.chenby.cn", "http://mirror.azure.cn", "https://dockerpull.org", "https://dockerhub.icu", "https://hub.rat.dev" ] }
2. Dify 创建聊天
(1) 访问http://localhost/(默认 80 端口) 进入 dify
(2) 首次进入初始化设置账号密码
(3) 点击 Dify 平台右上角头像 → 设置 → 模型供应商,选择 Ollama,轻点“添加模型”。
在配置 url 时,因为是 docker 服务,http://localhost:11434 存在无法访问的情况,可以尝试http://host.docker.internal:11434。
(4) 至此,可以开始创建应用,在主页选择 全部 -> 创建空白应用 -> 填入应用信息即可
3. Dify 知识库创建
主页选择 知识库 -> 创建知识库 -> 上传知识 -> 等待处理完成
进入聊天应用,选择刚才创建的知识库,即可开始带有私域知识的沟通。
六、应用测试
1. 翻译场景
(1) 本地客户端具有部分国际化测试文件需要执行翻译,格式示例如下,多层嵌套的 json 格式,value 为string类型。需要利用大模型对整个 json 文件进行翻译,将中文翻译为英文后按原格式返回
复制// zh.json { "window": { "willUnload": { "title": "确认刷新当前页面吗?", "message": "系统可能不会保存您做的更改", "unload_bt": "重新加载", "cancel_bt": "取消" } } } ocker)
(2) 实际应用测试,以deepseek-r1:7b/14b模型做测试。得到结果如下
(3) 执行脚本trans.js
复制const fs = require("fs"); const axios = require("axios"); // 1. 读取本地JSON文件 const readJsonFile = (filePath) => { return new Promise((resolve, reject) => { fs.readFile(filePath, "utf8", (err, data) => { if (err) { reject(err); } else { resolve(JSON.parse(data)); } }); }); }; const MODEL = "deepseek-r1:14b"; // 2. 调用本地大模型接口进行翻译 const translateText = async (text, key) => { let response; try { console.time(`run worker ${key}`); response = await axios.post("http://localhost:11434/api/generate", { // model: 'deepseek-r1:7b', model: MODEL, prompt: `有部分客户端国际化的配置文件,内容为json格式,需要翻译,要求按步骤进行翻译: 1. 将中文翻译为英文 2. 保持原有json格式不变,将value替换成翻译后的文本 3. 你始终以合法的JSON格式响应,返回结果格式如: {"key1":"翻译后的文本1","key2":"翻译后的文本2"},直接返回结果,不需要符号包裹 配置文件 """${JSON.stringify(text)}"""`, stream: false, }); console.timeEnd(`run worker ${key}`); const splitText = "</think>"; const startIndex = response.data.response.indexOf(splitText); const result = response.data.response .slice(startIndex + splitText.length) .trim() .replace(/<<+|>>+/g, ""); // console.log('response.data.response:', response.data.response, JSON.parse(result), result) return JSON.parse(result); // 假设接口返回的翻译结果在response.data.translatedText中 } catch (error) { console.error("翻译出错:", key); return translateText(text, key); // 如果翻译失败,返回原文 } }; // 3. 并行翻译逻辑(手动控制并发) const translateJson = async (jsonData, concurrency = 5) => { const entries = Object.entries(jsonData); const translatedData = {}; let currentIndex = 0; // 当前处理的任务索引 // 定义工作线程:每个线程不断处理下一个任务 const worker = async () => { while (currentIndex < entries.length) { const index = currentIndex++; if (index >= entries.length) break; // 所有任务已完成 const [key, value] = entries[index]; try { translatedData[key] = await translateText(value, key); } catch (error) { translatedData[key] = value; // 保留原文 } } }; // 启动指定数量的工作线程 const workers = Array(concurrency).fill(null).map(worker); await Promise.all(workers); // 等待所有线程完成 const result = {}; // 保持原有顺序 entries.forEach(([key, value]) => { result[key] = translatedData[key] || value; }); return result; }; // 4. 将翻译后的内容生成新的文件 const writeTranslatedJson = (filePath, data) => { return new Promise((resolve, reject) => { fs.writeFile(filePath, JSON.stringify(data, null, 2), "utf8", (err) => { if (err) { reject(err); } else { resolve(); } }); }); }; function compareObjectsWithPath(obj1, obj2, path = "") { // 类型不同时直接返回路径 if (typeof obj1 !== typeof obj2) { return { success: false, path: path || "root" }; } // 处理可遍历对象(对象或数组) if (typeof obj1 === "object" && obj1 !== null && obj2 !== null) { const isArr1 = Array.isArray(obj1); const isArr2 = Array.isArray(obj2); // 数组类型不一致 if (isArr1 !== isArr2) { return { success: false, path: path || "root" }; } if (isArr1) { // 数组长度不同 if (obj1.length !== obj2.length) { return { success: false, path: path || "root" }; } // 递归检查数组元素 for (let i = 0; i < obj1.length; i++) { const currentPath = `${path}[${i}]`; const result = compareObjectsWithPath(obj1[i], obj2[i], currentPath); if (!result.success) return result; } return { success: true }; } else { // 检查是否为纯对象(字面量对象) const isPlainObj1 = isPlainObject(obj1); const isPlainObj2 = isPlainObject(obj2); if (isPlainObj1 !== isPlainObj2) { return { success: false, path: path || "root" }; } // 非纯对象(如 Date、RegExp)需检查是否均为字符串 if (!isPlainObj1) { return typeof obj1 === "string" && typeof obj2 === "string" ? { success: true } : { success: false, path: path || "root" }; } // 合并所有 key 并检查数量 const keys1 = Object.keys(obj1); const keys2 = Object.keys(obj2); const allKeys = new Set([...keys1, ...keys2]); if (allKeys.size !== keys1.length || allKeys.size !== keys2.length) { return { success: false, path: path || "root" }; } // 递归检查每个属性 for (const key of allKeys) { const currentPath = path ? `${path}.${key}` : key; if (!keys1.includes(key) || !keys2.includes(key)) { return { success: false, path: currentPath }; } const result = compareObjectsWithPath( obj1[key], obj2[key], currentPath ); if (!result.success) return result; } return { success: true }; } } else { // 基本类型:检查是否均为字符串 return typeof obj1 === "string" && typeof obj2 === "string" ? { success: true } : { success: false, path: path || "root" }; } } // 判断是否为纯对象(字面量对象) function isPlainObject(value) { return Object.prototype.toString.call(value) === "[object Object]"; } // 主函数 const main = async () => { console.time("run main"); const inputFilePath = "./locales/zh.json"; // 输入的JSON文件路径 const outputFilePath = `output_${MODEL}.json`; // 输出的JSON文件路径 try { // 读取JSON文件 const jsonData = await readJsonFile(inputFilePath); // 翻译JSON内容 const translatedData = await translateJson(jsonData); // 将翻译后的内容写入新文件 await writeTranslatedJson(outputFilePath, translatedData); console.log( "翻译完成,结果是否存在遗漏项:", compareObjectsWithPath(jsonData, translatedData) ); console.log("翻译完成,结果已写入:", outputFilePath); } catch (error) { console.error("处理过程中出错:", error); } console.timeEnd("run main"); }; // 执行主函数 main();
7b:
复制run worker window: 1:16.909 (m:ss.mmm) 翻译出错: window run worker contextMenu: 1:19.915 (m:ss.mmm) 翻译出错: contextMenu run worker autoUpdater: 1:24.182 (m:ss.mmm) run worker menu: 1:54.272 (m:ss.mmm) run worker openWindowWarn: 2:08.219 (m:ss.mmm) 翻译出错: openWindowWarn run worker contextMenu: 54.257s 翻译出错: contextMenu run worker createPreloadFileWarn: 1:05.595 (m:ss.mmm) 翻译出错: createPreloadFileWarn run worker window: 1:13.320 (m:ss.mmm) 翻译出错: window run worker openWindowWarn: 42.933s run worker renderer: 1:06.620 (m:ss.mmm) run worker contextMenu: 58.129s run worker createPreloadFileWarn: 51.205s run worker window: 1:10.067 (m:ss.mmm) 翻译出错: window run worker window: 17.583s 翻译出错: window run worker window: 16.479s 翻译出错: window run worker window: 53.783s 翻译完成,结果是否存在遗漏项: { success: false, path: 'menu' } 翻译完成,结果已写入: output_deepseek-r1:7b.json run main: 5:08.166 (m:ss.mmm) ![img_1.png](img_1.png) ---------------- run worker openWindowWarn: 27.835s 翻译出错: openWindowWarn run worker window: 47.317s 翻译出错: window run worker contextMenu: 1:00.365 (m:ss.mmm) 翻译出错: contextMenu run worker openWindowWarn: 42.320s run worker window: 1:00.580 (m:ss.mmm) 翻译出错: window run worker menu: 2:01.575 (m:ss.mmm) 翻译出错: menu run worker contextMenu: 1:05.158 (m:ss.mmm) run worker autoUpdater: 2:08.553 (m:ss.mmm) run worker createPreloadFileWarn: 1:41.123 (m:ss.mmm) run worker window: 1:28.518 (m:ss.mmm) 翻译出错: window run worker renderer: 1:46.725 (m:ss.mmm) run worker menu: 1:54.031 (m:ss.mmm) 翻译出错: menu run worker window: 57.867s run worker menu: 1:16.267 (m:ss.mmm) 翻译完成,结果是否存在遗漏项: { success: false, path: 'menu' } 翻译完成,结果已写入: output_deepseek-r1:7b.json run main: 5:11.880 (m:ss.mmm) ![img_2.png](img_2.png)
翻译结果:
复制"window": { "willUnload": { "title": "What should you confirm before refreshing the current page?", "message": "the system might not save your changes", "unload_bt": "Reload", "cancel_bt": "Cancel" } },
14b:
复制run worker window: 2:15.983 (m:ss.mmm) run worker contextMenu: 2:17.554 (m:ss.mmm) run worker autoUpdater: 3:02.960 (m:ss.mmm) run worker menu: 4:06.753 (m:ss.mmm) run worker openWindowWarn: 4:14.074 (m:ss.mmm) run worker createPreloadFileWarn: 2:04.443 (m:ss.mmm) run worker renderer: 2:21.099 (m:ss.mmm) 翻译完成,结果是否存在遗漏项: { success: true } 翻译完成,结果已写入: output_deepseek-r1:14b.json run main: 4:38.673 (m:ss.mmm) ------------------------ run worker autoUpdater: 1:34.068 (m:ss.mmm) run worker openWindowWarn: 1:57.715 (m:ss.mmm) run worker window: 2:09.907 (m:ss.mmm) run worker contextMenu: 2:14.214 (m:ss.mmm) run worker renderer: 1:38.631 (m:ss.mmm) run worker createPreloadFileWarn: 2:24.484 (m:ss.mmm) run worker menu: 4:16.409 (m:ss.mmm) 翻译出错: menu run worker menu: 2:00.482 (m:ss.mmm) 翻译完成,结果是否存在遗漏项: { success: true } 翻译完成,结果已写入: output_deepseek-r1:14b.json run main: 6:16.900 (m:ss.mmm)
翻译结果:
复制"window": { "willUnload": { "title": "Confirm to refresh the current page?", "message": "The system may not save your changes.", "unload_bt": "Reload", "cancel_bt": "Cancel" } },
(4) 整体体验下来,14b 模型在翻译工作上比 7b 模型更为准确,一次性翻译成功率高。7B 模型翻译结果噪声多,返回结果可序列化效果差。翻译结果远远不如 14b。
结论
14b 在 macos 执行效率能满足特定业务场景要求。