提升 1.5~20 倍吞吐量,字节豆包大模型团队与香港大学发布并开源全新 RLHF 框架

字节跳动豆包大模型团队与香港大学公开联合研究成果 —— HybridFlow。 官方宣称,HybridFlow(开源项目名:veRL)是一个灵活且高效的大模型 RL 训练框架,兼容多种训练和推理框架,支持灵活的模型部署和多种 RL 算法实现。 该框架采用混合编程模型,融合单控制器(Single-Controller)的灵活性和多控制器(Multi-Controller)的高效性,可更好实现和执行多种 RL 算法,显著提升训练吞吐量,降低开发和维护复杂度。

字节跳动豆包大模型团队与香港大学公开联合研究成果 —— HybridFlow

官方宣称,HybridFlow(开源项目名:veRL)是一个灵活且高效的大模型 RL 训练框架,兼容多种训练和推理框架,支持灵活的模型部署和多种 RL 算法实现。

该框架采用混合编程模型,融合单控制器(Single-Controller)的灵活性和多控制器(Multi-Controller)的高效性,可更好实现和执行多种 RL 算法,显著提升训练吞吐量,降低开发和维护复杂度。

提升 1.5~20 倍吞吐量,字节豆包大模型团队与香港大学发布并开源全新 RLHF 框架

▲ 3D-HybridEngine(训练推理混合技术)一次迭代的流程

实验结果表明,HybridFlow 在各种模型规模和 RL 算法下,训练吞吐量相比其他框架提升了 1.5 倍至 20 倍

目前,该论文已被 EuroSys 2025 接收,代码仓库也对外公开,AI在线附相关链接如下:

  • 论文链接:https://arxiv.org/abs/2409.19256

  • 代码链接:https://github.com/volcengine/veRL

相关资讯

豆包大模型团队开源RLHF框架,训练吞吐量最高提升20倍

强化学习(RL)对大模型复杂推理能力提升有关键作用,但其复杂的计算流程对训练和部署也带来了巨大挑战。 近日,字节跳动豆包大模型团队与香港大学联合提出 HybridFlow。 这是一个灵活高效的 RL/RLHF 框架,可显著提升训练吞吐量,降低开发和维护复杂度。

揭开深度强化学习的神秘面纱

编辑 | 萝卜皮深度强化学习是人工智能最有趣的分支之一。它是人工智能社区许多显着成就的基石,它在棋盘、视频游戏、自动驾驶、机器人硬件设计等领域击败了人类冠军。深度强化学习利用深度神经网络的学习能力,可以解决对于经典强化学习(RL)技术来说过于复杂的问题。深度强化学习比机器学习的其他分支要复杂得多。在这篇文章中,我们将尝试在不涉及技术细节的情况下,揭开它的神秘面纱。状态、奖励和行动每个强化学习问题的核心都是代理和环境。环境提供有关系统状态的信息。代理观察这些状态并通过采取行动与环境交互。动作可以是离散的(例如,拨动开

机器学习可以更好地进行量子纠错

编辑 | 白菜叶自主量子纠错(AQEC)通过设计耗散来保护逻辑量子位,从而避免频繁、容易出错的测量反馈循环的必要性。玻色码空间(其中单光子丢失代表了主要的错误来源)由于其灵活性和可控性而成为 AQEC 的重要候选者。虽然现有的文献已经证明了具有玻色码空间的 AQEC 原则上的可行性,但这些方案通常基于 Knill-Laflamme 条件的精确实现,因此需要实现哈密顿距离 d≥2。实现这种哈密顿距离需要多个非线性相互作用和控制场,这使得这些方案在实验上具有挑战性。在这里,RIKEN 量子计算中心(RIKEN Cent