原子结构
SOTA性能,多尺度学习,中山大学提出蛋白质-药物相互作用AI框架
编辑 | 紫罗蛋白质、药物和其他生物分子之间的相互作用,在各种生物过程中发挥着至关重要的作用。了解这些相互作用对于破译生物学过程背后的分子机制和开发新的治疗策略至关重要。当前的多尺度计算方法,常常过于依赖于单一尺度,而对其他尺度的拟合不足,这可能与多尺度学习的不平多尺度衡性和固有的贪婪性有关。为了缓解优化不平衡,中山大学和上海交通大学的研究人员提出了一种基于变量期望最大化的多尺度表示学习框架 MUSE,它可以有效地整合多尺度信息进行学习。该策略通过相互监督和迭代优化,有效融合原子结构和分子网络尺度之间的多尺度信息。
5/31/2024 11:54:00 AM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
数据
机器人
模型
谷歌
大模型
Midjourney
智能
用户
开源
学习
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
3D
Anthropic
AI for Science
AI设计
机器学习
GPU
开发者
AI视频
场景
华为
预测
百度
人形机器人
伟达
苹果
Transformer
深度学习
模态
xAI
字节跳动
Claude
大语言模型
搜索
驾驶
文本
神器推荐
具身智能
Copilot
LLaMA
算力
视频生成
安全
干货合集
视觉
应用
大型语言模型
科技
亚马逊
特斯拉
AGI
训练
2024