描述
基于广义 Onsager 原理的 AI 平台,构建自定义热力学
编辑 | 绿萝基于先前积累的数据和已知物理原理的自动化科学发现,是人工智能最令人兴奋的应用之一,这种自动化的假设创建和验证可以帮助科学家研究复杂的现象,而传统的物理直觉可能会失败。近日,来自新加坡国立大学、新加坡科技研究局(A*STAR)、南洋理工大学和中国科学院的研究团队,开发了一个基于广义 Onsager 原理的人工智能平台:S-OnsagerNet,可以直接从对任意随机耗散系统的微观轨迹的观察中学习其宏观动力学描述。该方法同时构建了简化的热力学坐标,并解释这些坐标上的动力学。研究人员通过理论研究和实验验证长聚
2/15/2024 3:22:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
模型
大模型
Midjourney
智能
用户
学习
GPT
开源
微软
AI创作
Meta
图像
技术
论文
Stable Diffusion
马斯克
算法
Gemini
蛋白质
生成式
芯片
代码
神经网络
腾讯
英伟达
计算
研究
Sora
AI for Science
AI设计
3D
机器学习
GPU
开发者
Anthropic
场景
华为
预测
伟达
Transformer
深度学习
模态
百度
AI视频
苹果
驾驶
文本
搜索
xAI
神器推荐
人形机器人
Copilot
LLaMA
具身智能
算力
安全
大语言模型
Claude
应用
字节跳动
视频生成
科技
视觉
干货合集
2024
AGI
特斯拉
亚马逊
架构
语音