Adam-mini
Adam有了mini版:内存占用少一半,吞吐量提升50%
在训练大型语言模型(LLM)时,Adam(W) 基本上已经成为了人们默认使用的优化器。Adam 尽管性能优异,但使用成本很高。具体来说,Adam 需要内存来保存其优化器状态:一阶动量 m 和二阶动量 v^2。这总共需要模型大小至少 2 倍的内存。这样的内存消耗已经成为了 LLM 训练的一大主要负担。举个例子,要训练一个 7B 模型,只是 Adam 就需要每张卡有大约 56 GB 来保存 m 和 v;而如果再加上梯度,则总共需要 86 GB。即使使用最先进的 A100-80GB,成本也过高了。为了支持这样的高内存算法
7/8/2024 3:44:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
模型
大模型
Midjourney
智能
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
Gemini
蛋白质
生成式
芯片
代码
神经网络
腾讯
英伟达
计算
研究
Sora
AI for Science
AI设计
3D
机器学习
GPU
开发者
场景
Anthropic
华为
预测
伟达
Transformer
深度学习
模态
百度
AI视频
苹果
驾驶
文本
搜索
xAI
神器推荐
人形机器人
Copilot
LLaMA
具身智能
安全
算力
大语言模型
应用
视频生成
字节跳动
科技
Claude
干货合集
视觉
2024
AGI
特斯拉
亚马逊
架构
语音