资讯列表
百亿量化私募“道歉”,AI选股还能信吗?
近两年来,量化投资行业爆发式增长,一批私募规模突破百亿大关,备受市场关注。随着大量资金涌入量化私募,市场竞争亦在不断加剧,尤其是头部私募之间的比拼,纷纷展开军备竞赛。为了保持长期竞争优势,不少量化私募开始加大人工智能、机器学习方面的投入。与此同时,市场上也有许多疑问。阿尔法狗诞生以后,在围棋、象棋、德州扑克等领域,人工智能已经彻底打败了人类。那么,在投资领域人工智能会打败人类吗?近期,知名量化私募幻方量化因业绩回撤达到了历史最大值,在官微发布公告,表示“深感愧疚”。幻方表示,业绩波动的一部分原因来源于长周期上的持股
对抗图像变换攻击,腾讯OVB-AI技术中心获NeurIPS2021图像相似度挑战赛季军
近日,在 AI 顶会 NeurIPS 2021 的图像相似度挑战赛中(Image Similarity Challenge),来自腾讯在线视频 BU-AI 技术中心的团队,在 Matching Track 赛道战胜来自全球 1000 多支队伍,荣获季军。
ScienceAI 2021「AI+材料」专题年度回顾
编辑/凯霞传统的材料设计与研发,以实验和经验为主。但随着材料化学和加工变得越来越复杂,这变得越来越具有挑战性。随着人工智能(AI)的快速发展,AI 技术已广泛应用于材料科学各领域。科学家正努力通过计算机建模和 AI 技术,根据所需要的性能预测候选材料,从而加快新材料的研发速度和效率,降低研发成本。AI 正在加速搜索和预测材料特性。在 AI 的助力下,材料在极端、恶劣条件下的性能得到快速且准确的预测,实现了人类目前无法实现的......利用 AI 技术来加速设计和发现尚不存在的材料。这些先进的材料将使技术更先进和更环
这款产品发布之后,每款游戏都能有高智商的AI
想让游戏中的NPC变得跟AlphaGo一样聪明?其实不用那么复杂。
参数量仅为4%,性能媲美GPT-3:开发者图解DeepMind的RETRO
构建越来越大的模型并不是提高性能的唯一方法。
读博五年,我总结出了7条帮你「少走弯路」的真理
这些经验教训不一定有关学术,但长远来看,将有益于你所接触的任何工作。
AnchorDx通过基于深度学习的连续向量表示甲基化区域
编辑 | 萝卜皮基准医疗(AnchorDx)成立于 2015 年,是一家国际领先的采用甲基化高通量测序进行癌症早筛早诊产品开发的公司。创始人范建兵博士是基因检测领域的国际领军人物,拥有近 30 年从事人类基因组学、基因芯片(Microarrays)及高通量测序技术开发的经验。基准医疗是中国首家将 ctDNA 甲基化高通量测序技术用于肿瘤早诊的企业,并自主构建了全球最大的中国人群癌症早期甲基化数据库。自创立以来,基准医疗一直致力于自主开发真正具备临床价值的单癌种、多癌种乃至泛癌种早筛早诊产品,产品管线覆盖了包括肺癌、
准确率达 95%,机器学习预测复杂新材料合成
编辑/绿萝科学家和机构每年都投入非常多的资源来发现新材料,以期为燃料提供催化剂。随着自然资源的减少,以及对更高价值和先进性能产品的需求增长,研究人员越来越多地关注到纳米材料。但识别新材料的连续实验方法对材料发现施加了不可逾越的限制。近日,美国西北大学和丰田研究所(TRI)的研究人员应用机器学习来指导新纳米材料的合成,消除了材料发现相关的障碍。这种训练有素的算法,可通过定义数据集来准确预测可用于清洁能源、化学和汽车行业燃料的重要催化剂。该研究以「Machine learning–accelerated design
时隔五年,普林斯顿大学经典书《在线凸优化导论》第二版发表
2016 年发表的《在线凸优化导论》第一版已成为领域内经典书籍。
站在2022前展望大模型的未来,周志华、唐杰、杨红霞这些大咖怎么看?
岁末年初之际,让我们回顾大模型的过去,展望大模型的未来。
可对药物分子进行表征的几何深度学习
编辑 | 萝卜皮几何深度学习(GDL)基于包含和处理对称信息的神经网络架构。GDL 为依赖于具有不同对称性和抽象级别的分子表示的分子建模应用程序带来了希望。苏黎世联邦理工学院的研究人员对分子 GDL 进行了结构化和统一概述,重点介绍了其在药物发现、化学合成预测和量子化学中的应用。它包含对 GDL 原理的介绍,以及相关的分子表示,例如分子图、网格、曲面和字符串,以及它们各自的属性。讨论了分子科学中 GDL 当前面临的挑战,并尝试预测未来的机会。该综述以「Geometric deep learning on molec
全球首台百亿亿级超算用AMD的GPU:性能增7倍,能效提升3倍
E 级超算,每秒钟百亿亿次运算,1 后面跟 18 个零。
人工智能向“上”生长,可信AI渐行渐近
一位刚刚上路的新手驾驶员,如何成长为「老司机」?显然,Ta必须经过足够时间和里程的驾驶练习,才能够熟练、从容地应对各种可能出现的路况和紧急事件。所以尽管自动驾驶系统也会在投入使用之前历经大量的真实道路测试,但就算是科学文明相当普及的今天,仍有很多人依旧做不到将开车这件事「放心地交给AI」,毕竟摆在人们眼前的却是道不尽的争议和说不明的驾驶事故,而事故的发生可能是技术,算法,道路,数据,传输,天气,驾驶员等多重主客观因素影响造成的,权责划分十分困难。具体从算法层面看,由于驾驶场景天然对安全性有更高要求,这就需要自动驾驶
图神经网络准确预测无机化合物性质,加速固态电池的设计
编辑/绿萝大规模从头计算与结构预测的进步相结合,在无机功能材料的发现中发挥了重要作用。目前,在无机材料的广阔化学空间中,只发现了一小部分。实验和计算研究人员都需要加速探索未知的化学空间。来自美国国家可再生能源实验室(NREL)、科罗拉多矿业学院和伊利诺伊大学的研究人员展示了一种可以准确预测无机化合物性质的机器学习方法。展示了基态(GS)和更高能量结构的平衡训练数据集,对使用通用图神经网络(GNN)架构准确预测总能量的重要性。该研究可加速固态电池的设计。该研究以「Predicting energy and stabi
钟南山团队、腾讯联合研究:AI模型评估这三项措施最有助于防控疫情
关闭学校、关闭工作场所、取消公共活动、限制人群聚集、公共交通管制、居家生活建议、限制国内流动、限制国际旅行…… 到底哪项政策防疫效果更好?钟南山团队与腾讯的联合研究发现了其中的 Top 3。
最大数据集、多任务覆盖,阿里达摩院发布首个大规模中文多模态评测基准MUGE
在计算机视觉领域甚至人工智能的发展历程中,ImageNet对于整个领域的技术进步具有至关重要的作用。随着多模态学习成为当下的新热点,为了通过大规模数据集建设和全方位模型能力评测推动多模态领域的发展,阿里达摩院推出MUGE(全称Multimodal Understanding and Generation Evaluation Benchmark)评测基准。该基准是由达摩院联合浙江大学、阿里云天池平台联合发布,中国计算机学会计算机视觉专委会(CCF-CV专委)协助推出的首个大规模中文多模态评测基准。其拥有全球最大规模的中文多模态评测数据集,覆盖多种类型的任务,包括图文描述、基于文本的图像生成、跨模态检索等。MUGE的推出旨在解决当前中文多模态领域下游任务数据集匮乏的问题,并且为广大研究者提供权威平台,从理解能力和生成能力两大角度去衡量算法模型的有效性。
深度学习如炼丹,你有哪些迷信做法?网友:Random seed=42结果好
调参的苦与泪,还有那些「迷信的做法」。
中科驭数宣布完成数亿元A+轮融资,第二代DPU芯片完成研发设计
DPU芯片设计企业中科驭数今日宣布完成数亿元规模A 轮融资,本轮融资由麦星投资和昆仑资本联合领投,老股东灵均投资、光环资本追加投资。这是继7月底完成A轮融资之后,中科驭数今年获得的第二笔更大规模的数亿元融资。所筹资金将用于DPU芯片的研发和量产、以及市场开拓。已经完成第二代DPU芯片K2的设计工作中科驭数正在研发的第二代DPU芯片K2已经完成设计和验证工作,预计将于2022年第一季度投产流片。DPU是数据专用处理器(Data Processing Unit),是数据中心继CPU和GPU之后第三颗重要的算力芯片。随着