字节豆包通用图像编辑模型SeedEdit开启测试 用户可一句话轻松改图

11月11日,字节在豆包大模型团队官网上公布最新通用图像编辑模型SeedEdit。 SeedEdit支持一句话轻松改图,包括修图、换装、美化、转化风格、在指定区域添加删除元素等各类编辑操作,通过简单的自然语言即可驱动模型编辑任意图像。 目前,该模型已经在豆包PC端及即梦网页端开启测试。

11月11日,字节在豆包大模型团队官网上公布最新通用图像编辑模型SeedEdit。SeedEdit支持一句话轻松改图,包括修图、换装、美化、转化风格、在指定区域添加删除元素等各类编辑操作,通过简单的自然语言即可驱动模型编辑任意图像。

目前,该模型已经在豆包PC端及即梦网页端开启测试。用户可以在豆包生成图片后,点击继续编辑按钮,输入简单的文本指令对图片背景或主体进行轻松调整,实现一句话改图。例如,用户在生成一张“小狗在草地奔跑”的图片后,可以直接输入“背景换成海边”等指令,获得一张基于原图片的微调图。

字节豆包通用图像编辑模型SeedEdit开启测试 用户可一句话轻松改图

此外,用户也可以尝试在豆包PC或即梦的图像生成功能中自行上传参考图并进行二次加工。

SeedEdit是国内首个实现产品化的通用图像编辑模型。过往,学术界在文生图和图生图领域已有较多研究,但做好生成图片的指令编辑一直是难题,二次修改很难保证稳定性和生成质量。今年以来,Dalle3、Midjourney接连推出产品化的生图编辑功能,相较业界此前方案,编辑生成图片的质量大大改善,但仍缺乏对用户编辑指令的精准响应和原图信息保持能力。

字节豆包通用图像编辑模型SeedEdit开启测试 用户可一句话轻松改图

字节跳动豆包大模型团队表示:图像编辑任务的关键在于取得「维持原始图像」和「生成新图像」之间的最优平衡,这一理念贯穿了整个模型的设计与优化过程。

据介绍,在模型数据生产中, SeedEdit 针对数据稀缺问题, 重新设计模型架构,并且采用多模型,多尺度,和多标准的数据制造方案很大程度上解决了数据量,数据多样性和数据质量的问题。作为一款专为图像编辑任务设计的模型,SeedEdit在通用性、可控性、高质量等方面取得了一定突破。

此前业界技术主要针对单个专家任务进行优化,比如针对表情、发型、背景的删除或替换,或专门配置工作流进行风格调配,每次出现新的编辑任务均需收集对应数据进行训练开发。而SeedEdit作为通用的图像编辑模型,适用各类编辑任务,支持用户脑洞大开的奇思妙想,无需再训练微调即可快捷应用。 它与业界同类方法对比 (如EMU Edit和Ultra Edit),取得显著更优的性能指标。

字节豆包通用图像编辑模型SeedEdit开启测试 用户可一句话轻松改图

(HQ-Edit等基准测评显示:SeedEdit能理解相对模糊的指令,且执行细致编辑时具有更高的图像保持率和成功率)

即便在常规任务中,相比专家模型,SeedEdit 也有一定优势。比如,在“抠图”换背景等用户最常用到的图像分割任务中,SeedEdit 编辑生成后的图像风格自然,无“贴图感”;在局部涂抹、编辑、添加和删除元素等任务中,相比手动涂抹编辑, SeedEdit通过语言指定, 大大节省了用户涂抹的时间,尤其针对裂纹、发丝等相对精细的涂抹区域。

字节豆包通用图像编辑模型SeedEdit开启测试 用户可一句话轻松改图

(要求图片将草莓替换成柠檬)

同时,SeedEdit通过创新的模型架构,多尺度、多规则的数据获取、构造和过滤方案,能更好地理解用户意图并对齐 diffusion 生图模型,极大提高了图像编辑的精准度,并保持了高质量的图片生成效果。

字节豆包通用图像编辑模型SeedEdit开启测试 用户可一句话轻松改图

(要求去掉裂纹,让图片变干净)

基于豆包文生图大模型,目前SeedEdit支持中文和英文输入,还可以对中文成语和专有名词进行精准响应。下一步,SeedEdit还将开放多轮复杂编辑的功能。

豆包大模型团队表示,现阶段SeedEdit对模型生成图片的编辑效果要好于输入真实图片,同时在更复杂和更精细的控制上仍有改进空间。未来,SeedEdit会在真实图片保真、ID保持、编辑精确性、以及长时序的故事类、漫画类生成方面做进一步的优化和探索,提升编辑可用率和用户体验,支持用户更高效地创作有趣的内容。

相关资讯

大模型价格进入“厘”时代,豆包大模型定价每千tokens仅0.8厘

大模型的性价比之战已经来到了新的阶段。5月15日,2024火山引擎FORCE原动力大会上,火山引擎总裁谭待宣布,字节跳动内部自研的豆包大模型正式在火山引擎上对外开放服务。豆包大模型在价格上主打“极致性价比”:豆包通用模型pro-32k版,推理输入价格0.0008元/千tokens,较行业价格低99.3%。一元钱能买到豆包主力模型的125万tokens,相当于三本《三国演义》的输入量。谭待认为,降低成本是推动大模型快进到“价值创造阶段”的一个关键因素。过去一年时间中,许多企业已经从探索尝试大模型,到成功将大模型与核心

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]当前主流的视觉语言模型(VLM)主要基于大语言模型(LLM)进一步微调。因此需要通过各种方式将图像映射到 LLM 的嵌入空间,然后使用自回归方式根据图像 token 预测答案。在这个过程中

耳朵没错,是声音太真了,字节豆包语音合成成果Seed-TTS技术揭秘

Seed-TTS 是字节跳动豆包大模型团队近期发布的语音生成大模型成果。它生成的语音几乎与真人完全一样,连发音瑕疵也能生成出来,尤其在学习模仿人类说话方面,相似性和自然度均有很好表现。举例来说,将一段语音提供给 Seed-TTS,它就能按文本生成全新语音,且带上原素材的声音特征。原素材(Prompt):Seed-TTS 生成的中文语音: 突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:“我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?”英文语音也可生成,且依然能“复