AI在线 AI在线

驯服AI,更懂物理!何恺明团队提出全新DHN「去噪哈密顿网络」

作者:新智元
2025-03-17 08:20
近日,何恺明团队提出了去噪哈密顿网络(Denoising Hamiltonian Network,DHN),就像给物理知识开了挂。 传统的机器学习方法虽然能处理一些简单的物理关系,但面对复杂的物理系统时,却显得力不从心。 来自MIT、斯坦福、西北大学等的研究者将哈密顿力学算子推广到神经网络中,不仅能捕捉非局部时间关系,还能通过去噪机制减轻数值积分误差。

近日,何恺明团队提出了去噪哈密顿网络(Denoising Hamiltonian Network,DHN),就像给物理知识开了挂。

图片

传统的机器学习方法虽然能处理一些简单的物理关系,但面对复杂的物理系统时,却显得力不从心。

来自MIT、斯坦福、西北大学等的研究者将哈密顿力学算子推广到神经网络中,不仅能捕捉非局部时间关系,还能通过去噪机制减轻数值积分误差。

图片

论文链接:https://arxiv.org/abs/2503.07596

现有的方法对相邻时间步之间的局部关系进行建模,这就像是只看到了树木,却忽略了整个森林。

这种局限性使模型在处理复杂物理系统时,难以把握系统的全局特征和高级别的相互作用。

图片

另一方面,它们专注于正向模拟,而忽视了更广泛的物理推理任务。

实际应用中,往往还需要解决许多其他问题,比如从稀疏的观测数据中推断物理参数,对不完整的轨迹进行修复,或者提高轨迹数据的分辨率等。

DHN:物理推理的创新引擎

DHN的出现突破了传统机器学习在物理推理中的局限,它将哈密顿力学巧妙地推广到神经网络。

图片

哈密顿力学是经典力学的一种重要表述形式,它通过哈密顿量来描述系统的能量和状态变化。

DHN引入了块式离散哈密顿的概念。它把系统状态按照时间维度划分为一个个状态块,每个状态块包含多个时间步的状态信息。

图片

通过这种方式,DHN可以捕捉到更长时间范围内的状态关系,突破了传统方法只能关注局部时间步的限制。

就像看一段舞蹈表演,不再是只关注每一个瞬间的动作,而是能够连贯地看到舞者在一段时间内的整体动作变化和节奏韵律。

块式离散哈密顿

将状态块定义为沿时间维度连接的(p,q)状态堆叠,即

图片

其中b为块大小。引入步长s作为一个可定义的超参数,取代固定的时间间隔Δt。

这种方法使网络能够捕捉更广泛的时间相关性,同时保持哈密顿结构的不变性。

通过关联两个重叠的状态块(每个块大小为b,偏移步长为s)来定义分块离散哈密顿量:

图片

下图展示了一个块大小b=4且步长s=2的分块离散哈密顿量。经典HNN可被视为块大小b=1且步长s=1的特例。

图片

类似于HNN,分块离散哈密顿网络图片可通过以下损失函数训练:

图片

去噪机制

DHN的去噪机制是其一大亮点。

受到去噪扩散模型的启发,DHN在训练过程中会对输入状态添加不同程度的噪声,然后通过网络自身的学习能力,逐步去除这些噪声,恢复出真实的物理状态。

图片

通过这种方式,DHN能有效减轻数值积分误差,提高模型在长期预测中的稳定性。不同的噪声模式能让DHN在各种噪声条件下保持良好的适应性。

不同掩码模式

通过在训练过程中设计不同的掩码模式,研究团队实现了灵活的推理策略,以适应不同的任务。

图中展示了三种不同的掩码模式:

  • 自回归(autoregression):对块的最后几个状态进行掩码,这类似于物理模拟中的前向建模,用于下一状态预测。
  • 超分辨率(super-resolution):对块中间的状态进行掩码,可用于数据插值。
  • 任意阶(arbitrary-order):包括随机掩码,掩码模式可根据任务需求自适应设计。

图片

DHN网络架构

仅解码Transformer架构

对于每个哈密顿块,网络的输入由不同时刻的图片堆叠以及图片堆叠组成,同时引入一个全局潜在编码z,用于对整个轨迹进行条件控制。

仅解码Transformer采用类似于GPT的仅解码架构,但不包含因果注意力掩码。

对所有输入token图片应用自注意力机制,将其作为长度为2b+1的序列处理。

其中,全局潜在编码z作为查询token,用于输出哈密顿值。

图片

DHN还将每个状态的噪声尺度编码到位置嵌入中,让网络更好地感知噪声对状态的影响。

研究者实现了一个简单的两层Transformer,在单个GPU上就能高效运行。

自动解码

为了高效地存储和优化系统特定的嵌入,DHN采用了自动解码架构。

与传统的依赖编码器网络来推断潜在编码的方法不同,DHN为每个轨迹维护一个可学习的潜在编码z。

图片

这就好比为每个轨迹建立了一个专属的「记忆库」,在训练过程中,网络权重和潜在编码会联合优化,不断地调整和完善这个「记忆库」。

训练完成后,当遇到新的轨迹时,只需冻结网络权重,对新轨迹的潜在编码进行优化,就能快速适应新的情况。

实验中的卓越表现

为验证DHN的有效性,研究人员进行了一系列实验,涵盖了多个不同的物理推理任务。

正向模拟

在正向模拟任务中,DHN需根据初始条件,逐步预测物理系统的未来状态。

在单摆和双摆系统中,通过在DHN块内应用掩码策略,让模型学习预测未来状态。

在拟合已知轨迹的实验中,与传统的HNN相比,DHN在预测单摆和双摆的状态时,误差更小。

图片

当块大小为2时,DHN能稳定地守恒总能量,而HNN虽然是一个保证能量守恒的网络,但由于数值积分器的影响,仍然会出现不可控的能量漂移。

在对新轨迹进行补全的实验中,DHN同样表现优异。它能从稀疏的初始观测中准确地推断系统动力学,并预测未来状态。

相比之下,HNN和其他没有物理约束的基线模型在处理新轨迹时,误差较大,难以准确预测未来状态。

图片

表示学习

表示学习是评估模型对物理系统参数编码和区分能力的重要任务。

DHN用随机掩码模式,利用去噪和随机掩码这两种自监督学习技术,来增强在动态物理系统中的表示学习能力。

研究人员在双摆系统上进行实验,预测摆长比图片

图片

通过对自动解码器和代码进行预训练,然后用线性回归层对潜在代码进行线性探测,结果显示,DHN在学习表示物理属性方面很出色。

与HNN和普通网络相比,DHN的均方误差更低,能够更准确地捕捉到物理系统的潜在特征。

研究还发现,在双摆系统中,块大小为4是推断其参数的最佳时间尺度。

图片

下图展示了不同块大小和步长的DHN的结果。对于简单的双层Transformer,最佳的块大小和步长约为图片,具有适度的重叠。

图片

轨迹插值

轨迹插值是DHN展示灵活性的另一个重要任务。DHN用渐进式超分辨率技术,通过重复应用2倍超分辨率来实现4倍超分辨率。

研究人员构建了块大小b=2、步长s=1的DHN块,对不同稀疏度的轨迹进行插值。

图片

实验结果表明,在处理与训练集初始状态相同的轨迹时,DHN和基于CNN的方法都能取得较好的插值效果。

但在处理具有未见过初始状态的轨迹时,CNN由于严重依赖训练分布,难以泛化,而DHN凭借其受物理约束的表示,能够推断出合理的中间状态,展现出了强大的泛化能力。

图片

尽管DHN在物理推理领域取得了显著的成果,但它也面临着一些挑战。

其中一个主要挑战是计算成本较高,相比传统Transformer,DHN需要更密集的梯度计算,这也限制了它的应用范围。

参考资料:

相关标签:

相关资讯

从一个简单的神经网络模型开始

关于神经网络的文章写的也不少了,但一直没弄明白神经网络到底是怎么运作的;而现有的神经网络模型又太复杂,如Transformer,CNN,RNN,以及各种应用场景(NLP,CV,分类任务,回归任务等等);导致我们无法看到神经网络最本质的东西。 所以,今天我们就来从最简单的神经网络开始学起。 简单神经网络神经网络的基本原理很简单,那就是模仿由人类大脑神经元构成的神经网络;神经元结构如下图所示:上图是生物学中神经元的基本结构,神经元由树突和轴突以及细胞核组成;而不同神经元之间通过轴突进行连接;当然这些都是中学生物学的基础,就不多说了。
2/19/2025 6:00:00 PM
AI探索时代

再谈什么是神经网络,透过现象看本质

面对着网络上各种各样关于神经网络的内容,很多想学习神经网络的人都无从下手,包括作者自己;面对各种乱七八糟的概念,名词,很多人都被这些东西蒙住了眼睛。 所以,今天我们就抛开各种高大上的概念,从本质出发来学习什么网络;我们今天不讨论CNN,RNN,Transformer,LSTM等各种神经网络架构;只讨论什么是神经网络。 神经网络对神经网络有过了解的人应该都知道,神经网络就是仿生学的一种实现,使用的是数学模型模拟人类的大脑神经系统;具体的可以看一下上一篇文章——从一个简单的神经网络模型开始。
2/20/2025 8:10:00 AM
AI探索时代

怎么实现一个神经网络?神经网络的组成结构

对学习神经网络技术的人来说,自己设计一个神经网络模型是很多人都想做的事情;也是神经网络技术学习过程中必不可少的一个环节;但是很多人又不知道应该怎么下手。 所以今天就介绍一下怎么设计一个神经网络模型。 实现一个神经网络很多人认为神经网络复杂的原因是因为没有了解过神经网络的组成结构;因此,就很难弄清楚神经网络模型中每个环节的作用,所以我们就先从神经网络的结构入手。
2/25/2025 2:13:31 PM
AI探索时代