子图
代谢数据集上四项指标达94%~98%,西南交大团队开发多尺度图神经网络框架,助力药物研发
作者 | 刘悦睿编辑 | 红菜苔药物研发过程中,了解分子与代谢路径之间的关系,对于合成新分子和优化药物代谢机制至关重要。西南交通大学杨燕/江永全团队开发了一种新型的多尺度图神经网络框架MSGNN,来将化合物与代谢路径联系起来。它包括特征编码器、子图编码器和全局特征处理器三部分,分别学习了原子特征、子结构特征和额外的全局分子特征,这三个尺度的特征可赋予模型更全面的信息。该框架在 KEGG 代谢路径数据集上的表现优于现有方法,Accuracy、Precision、Recall、F1分别达到98.17%、94.18%、9
2/2/2024 3:10:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
英伟达
GPU
AI for Science
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
深度学习
百度
驾驶
AI视频
文本
苹果
搜索
神器推荐
算力
LLaMA
Copilot
安全
科技
xAI
视频生成
应用
字节跳动
干货合集
2024
人形机器人
具身智能
特斯拉
视觉
亚马逊
语音
大语言模型
AGI
Claude
AI应用场景