应变

Nature子刊 | 通过视频去噪扩散模型进行非线性机械超材料逆向设计

编辑 | 绿萝复杂材料特性的逆向设计,在解决软机器人、生物医学植入物和织工程等方面具有巨大潜力。尽管机器学习模型提供了此类逆映射,但它们通常仅限于线性目标属性。近日,苏黎世联邦理工学院(ETH Zurich)的研究人员为了定制非线性响应,证明了在周期性随机 cellular 结构的全场数据上训练的视频扩散生成模型,可以成功地预测和调整它们在大应变状态下的非线性变形和应力响应,包括屈曲和接触。成功的关键是打破直接学习从属性到设计的映射的常见策略,并将框架扩展为内在估计预期变形路径和全场内应力分布,这与有限元模拟非常一
  • 1