Yann LeCun
年龄两岁,教龄一年半:婴儿AI训练师登上Science
只用 61 个小时的数据:人们终于证明了,利用当代 AI 工具,实现「真正的语言学习」是可行的。在公开采访中,图灵奖得主 Yann LeCun 多次提到,现在的 AI 模型和人类婴儿相比,学习效率实在是太低了。那么,如果让一个 AI 模型去学习婴儿头戴摄像头拍到的东西,它能学到什么?最近,Science 杂志上的一篇论文进行了初步尝试。研究发现,即使数据有限,AI 模型也能从 10 到 100 个例子中学到单词 - 视觉所指对象之间的映射,而且能够零样本地泛化到新的视觉数据集,并实现多模态对齐。这说明,利用当今的人
Yann LeCun:生成模型不适合处理视频,AI得在抽象空间中进行预测
AI 理解视频不能依靠在像素空间中预测。在互联网文本数据即将枯竭之际,很多 AI 研究者将目光转向了视频。但如何让 AI 理解视频数据成了新的难题。在 2024 世界经济论坛的一次会谈中,图灵奖得主、Meta 首席 AI 科学家 Yann LeCun 被问到了这个问题。他认为,虽然这个问题还没有明确的答案,但适合用来处理视频的模型并不是我们现在大范围应用的生成模型。而且新的模型应该学会在抽象的表征空间中预测,而不是在像素空间中。一起参与讨论的还有斯坦福大学教授、Coursera 联合创始人 Daphne Kolle
2024年,开源AI潜力更大?
开源社区为人工智能发展做了什么?开源(OS)正在驱动生成式 AI 的创新。得益于像 GitHub 和 Hugging Face 等学术研究平台,我们得以见证 AI 技术的蓬勃发展。但值得注意的是,OpenAI、Anthropic 等越来越多的科技公司选择不公开模型的代码和权重。指责大型科技公司闭源的声音从未停止,昨天,前特斯拉 AI 总监,OpenAI 的创始成员 Andrej Karpathy 发了一条推特暗指「闭源」对人才的限制:在人工智能领域,我认为你数不出来 30 个 30 岁以下的闻名者。在公司结构图里,
Yann LeCun发来肯定:腾讯人像照片生成可以随便玩了
AI 帮你成为百变星君。这一次,Yann LeCun 首次跻身「百变大咖」。身穿钢铁侠的衣服、戴着酷酷的墨镜面无表情地注视着你,一身古装在故宫门前打卡留念……就连本人也出来转发并喊话,「左下角这幅文艺复兴时期的画,是我的最爱。」性感女神寡姐身穿紫色巫师服注视着远方,还可以戴着圣诞帽和你对视:身穿太空服的奥特曼看起来萌萌的,把头发染成红色也毫无违和感上述研究便是来自南开大学、腾讯等机构提出 PhotoMaker,这是一种高效的个性化文本到图像生成方法。相关论文《PhotoMaker:Customizing Reali
量子计算凛冬将至,LeCun:现实冷酷,炒作太多
距离技术成熟永远「还差五年」?「量子计算,寒冬将至了?」本周五,AI 先驱 Yann LeCun 的一番言论引发了人们的讨论。这位 AI 领域的著名学者表示,量子计算正在进入一个艰难时刻。与此同时,很多科技领域专家认为,目前的量子计算技术进步很多趋向于炒作,距离实际应用仍然很遥远。对此,很多人同样持有悲观态度。让我们看看 IEEE 的这篇文章是怎么说的:量子计算机革命可能比许多人想象的更遥远、更有限。一直以来,量子计算机都被期许为一种能够解决广泛问题的强大工具,可应用的方向包括金融建模、优化物流和加速机器学习。量子
ChatGPT构建离不开PyTorch,LeCun言论引热议,模型厂商不开放权重原来为此
其实,开源、闭源各有其道理,关键看如何抉择。这两天,有关开源的话题又火了起来。有人表示,「没有开源,AI 将一无所有,继续保持 AI 开放。」这个观点得到了很多人的赞同,其中包括图灵奖得主、Meta 首席科学家 Yann LeCun。想象一下,如果工业界的 AI 研究实验室仍然封闭、没有开源代码,并为所有内容申请和执行专利,那么今天的 AI 行业将会变成什么样子?想象一个没有 PyTorch 的世界,并且 Transformer、ResNet、Mask-RCNN、FPN、SAM、DINO、seq2seq、wav2v
2024年AI趋势看这张图,LeCun:开源大模型要超越闭源
能感受到其中的趋势吗?2023 年即将过去。一年以来,各式各样的大模型争相发布。当 OpenAI 和谷歌等科技巨头正在角逐时,另一方「势力」悄然崛起 —— 开源。开源模型受到的质疑一向不少。它们是否能像专有模型一样优秀?是否能够媲美专有模型的性能?迄今为止,我们一直还只能说是某些方面接近。即便如此,开源模型总会给我们带来经验的表现,让我们刮目相看。开源模型的兴起正在改变游戏规则。如 Meta 的 LLaMA 系列以其快速迭代、可定制性和隐私性正受到追捧。这些模型被社区迅速发展,给专有模型带来了强有力的挑战,能够改变
R-CNN作者Ross Girshick离职,何恺明、谢赛宁回归学界,Meta CV走出了多少大神
Yann LeCun 表示:「人才离开 FAIR 是我们的损失,但自己仍为他们感到高兴」。FAIR 又一位大佬级研究科学家「出走了」,这次是 R-CNN 作者 Ross Girshick。近日,Meta 首席科学家 Yann LeCun 发推宣布,Ross Girshick 将离开 FAIR,加入艾伦人工智能研究所(AI2)。此前离职的还有 ResNeXt 一作谢赛宁(加入纽约大学任助理教授)、Georgia Gkioxari(加入 Caltech 任助理教授)等。图源: Ross Girshick 的个人主页,证
比ChatGPT早发两周,被喷下线的Galactica成了LeCun最大的意难平
今天我们提到大型语言模型(LLM),第一个想到的就是 OpenAI 的 ChatGPT。一年来,ChatGPT 因其强大的性能,广泛的应用前景而爆火出圈。但谈到大型语言模型,ChatGPT 并不是第一个。一年前,也就是 OpenAI 发布 ChatGPT 的前两周,Meta 发布了一个名为 Galactica 的试用版模型。作为一个大型语言模型,Galactica 是在大量的论文、参考资料、知识库和许多其他来源的科学语料库上进行训练的,包括超过 4800 万篇论文、教科书和讲义、数百万种化合物和蛋白质知识、科学网站
LeCun、吴恩达等370多人签联名信:严格控制AI是危险的,开放才是解药
这封联名信的名单还在持续更新中。近几日,关于如何监督 AI 的讨论越来越热烈,各位大佬们意见非常不统一。比如图灵奖三巨头 Geoffrey Hinton、Yoshua Bengio、Yann LeCun 就出现了两种观点。Hinton、Bengio 为一队,他们强烈呼吁加强对 AI 的监管,否则可能引发「AI 灭绝人类」的风险。LeCun 与他们的观点并不相同,他认为 AI 强监管必将带来巨头垄断,结果是只有少数公司控制 AI 的研发。为了表达自己的想法,很多人以签署联名信的方式来传达观点,就拿刚刚过去的几天来说,
图灵奖得主吵起来了,LeCun:Bengio、Hinton等的AI灭绝论是荒谬的
LeCun 表示,绝大多数学术同行都非常支持开放式 AI 研发,但还是有反对者。关于 AI 风险的问题,各路大佬们也是意见不统一。有人带头签署联名信,呼吁 AI 实验室应立即暂停研究,深度学习三巨头 Geoffrey Hinton、Yoshua Bengio 等都支持这一观点。就在近几日,Bengio、Hinton 等再发联名信《在快速发展的时代管理人工智能风险》,呼吁在开发 AI 系统之前,研究者应该采取紧急治理措施,将安全和道德实践纳入重点,呼吁各国政府应该采取行动,管理 AI 带来的风险。文中提到了一些紧急治
LeCun又双叒唱衰自回归LLM:GPT-4的推理能力非常有限,有两篇论文为证
「任何认为自动回归式 LLM 已经接近人类水平的 AI,或者仅仅需要扩大规模就能达到人类水平的人,都必须读一读这个。AR-LLM 的推理和规划能力非常有限,要解决这个问题,并不是把它们变大、用更多数据进行训练就能解决的。」一直以来,图灵奖得主 Yann LeCun 就是 LLM 的「质疑者」,而自回归模型是 GPT 系列 LLM 模型所依赖的学习范式。他不止一次公开表达过对自回归和 LLM 的批评,并产出了不少金句,比如:「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」「自回归生成模型弱爆了!(Aut