协同运动预测框架
预测误差降低12.3%,多车协同预测框架CMP,破解自动驾驶「视线盲区」
2025 年 3 月,加州大学河滨分校与密歇根大学、加州大学伯克利分校以及华盛顿大学联合团队在机器人领域顶级期刊《IEEE Robotics and Automation Letters》发表最新研究成果 ——CMP(Cooperative Motion Prediction),首次提出一种面向车联网(V2X)的协同运动预测框架,通过多车信息共享与融合,显著提升自动驾驶车辆的轨迹预测精度与场景适应能力。 该技术已在真实场景数据集 V2V4Real 和仿真平台 OPV2V 中验证其高效性,相比现有最优模型,预测误差降低 12.3%,为复杂交通环境下的自动驾驶安全决策提供了全新解决方案。 论文标题:CMP: Cooperative Motion Prediction with Multi-Agent Communication论文链接::::感知 - 预测一体化协同,破解自动驾驶 “视线盲区”传统自动驾驶系统依赖单车传感器,易受遮挡或极端天气影响,导致感知与预测能力受限。
3/21/2025 10:32:00 AM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
人形机器人
深度学习
AI视频
模态
字节跳动
xAI
驾驶
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型