相互作用

Nature子刊,准确率达96%,AI从序列中预测蛋白-配体互作

编辑 | 萝卜皮在药物研发中,确定小分子配体对蛋白质的结合亲和力和功能效应至关重要。目前的计算方法可以预测这些蛋白质-配体相互作用特性,但如果没有高分辨率的蛋白质结构,通常会失去准确性,并且无法预测功能效应。莫纳什大学(Monash University)和格里菲斯大学(Griffith University)的研究人员开发了 PSICHIC(PhySIcoCHemICal graph neural network),这是一个结合物理化学约束的框架,可直接从序列数据解码相互作用指纹(fingerprints)。这使

登Nature子刊,拓扑Transformer模型进行多尺度蛋白质-配体互作预测,助力药物研发

编辑 | 萝卜皮一项新的人工智能应用将帮助研究人员提高药物研发能力。该项目名为 TopoFormer,是由美国密歇根州立大学(Michigan State University)数学系 Guowei Wei 教授领导的跨学科团队开发的。TopoFormer 将分子的三维信息转化为典型的基于人工智能的药物相互作用模型可以使用的数据,扩展了这些模型预测药物有效性的能力。「有了人工智能,你可以让药物研发更快、更高效、更便宜。」Wei 说,他同时在生物化学和分子生物学系以及电气和计算机工程系任职。Wei 教授解释道,在美国

准确率达0.96,从序列中预测蛋白-配体互作的物理化学约束图神经网络

编辑 | 萝卜皮在药物研发中,确定小分子配体对蛋白质的结合亲和力和功能效应至关重要。目前的计算方法可以预测这些蛋白质-配体相互作用特性,但如果没有高分辨率的蛋白质结构,通常会失去准确性,并且无法预测功能效应。莫纳什大学(Monash University)和格里菲斯大学(Griffith University)的研究人员开发了 PSICHIC(PhySIcoCHemICal graph neural network),这是一个结合物理化学约束的框架,可直接从序列数据解码相互作用指纹(fingerprints)。这使

「AI+物理先验知识」,浙大、中国科学院通用蛋白质-配体相互作用评分方法登Nature子刊

编辑 | X蛋白质就像是身体中的精密锁具,而药物分子则是钥匙,只有完美契合的钥匙才能解锁治疗之门。科学家们一直在寻找高效的方法来预测这些「钥匙」和「锁」之间的匹配度,即蛋白质-配体相互作用。然而,传统的数据驱动方法往往容易陷入「死记硬背」,记住配体和蛋白质训练数据,而不是真正学习它们之间的相互作用。近日,浙江大学和中国科学院研究团队,提出了一种名为 EquiScore 的新型评分方法,利用异构图神经网络整合物理先验知识,并在等变几何空间中表征蛋白质-配体相互作用。EquiScore 基于一个新数据集进行训练,该数据

SOTA性能,多尺度学习,中山大学提出蛋白质-药物相互作用AI框架

编辑 | 紫罗蛋白质、药物和其他生物分子之间的相互作用,在各种生物过程中发挥着至关重要的作用。了解这些相互作用对于破译生物学过程背后的分子机制和开发新的治疗策略至关重要。当前的多尺度计算方法,常常过于依赖于单一尺度,而对其他尺度的拟合不足,这可能与多尺度学习的不平多尺度衡性和固有的贪婪性有关。为了缓解优化不平衡,中山大学和上海交通大学的研究人员提出了一种基于变量期望最大化的多尺度表示学习框架 MUSE,它可以有效地整合多尺度信息进行学习。该策略通过相互监督和迭代优化,有效融合原子结构和分子网络尺度之间的多尺度信息。

AI 预测所有生命分子,谷歌 AlphaFold 3 模型登 Nature:欲颠覆生物学

谷歌 DeepMind 公司近日推出了 AlphaFold 3,通过预测所有生命分子是如何相互作用的,加速寻找新药和探索新的治疗方法,治疗癌症、帕金森氏症、疟疾、肺结核等疾病。IT之家从报道中获悉,AlphaFold 3 能够预测人体每个细胞分子的复杂形状,以及如何相互连接,以及其中最小的变化如何影响可能导致疾病的生物功能。科学家和医学专家希望借助 AlphaFold 3,深入研究抗体和药物的相互作用,寻找更好的治疗方法。DeepMind 创始人兼首席执行官 Demis Hassabis 表示,该项目为研究人员提供

辉瑞 AI 方法登 Science,揭示数以万计的配体-蛋白质相互作用

编辑 | X尽管蛋白质结构预测取得了重大进展。但对于 80% 以上的蛋白质,迄今为止尚未发现小分子配体。识别大多数蛋白质的小分子配体仍具有挑战性。现在,奥地利科学院分子医学研究中心 CeMM 的研究人员与辉瑞公司合作,开发了一种方法来预测数百种小分子与数千种人类蛋白质的结合活性。这项大规模研究揭示了数以万计的配体-蛋白质相互作用,通过探索这些相互作用,从而可以开发化学工具和治疗方法。此外,在机器学习和人工智能的支持下,它可以「公正」地预测小分子如何与活体人类细胞中存在的所有蛋白质相互作用。相关研究以《Large-s

精确预测相分离蛋白质,同济&中国科学院机器学习预测器PSPire

编辑 | 萝卜皮对蛋白质相分离(PS)的理解的迅速发展带来了丰富的生物信息学工具来预测相分离蛋白质(PSP)。这些工具通常偏向于具有大量本质无序区域 (IDR) 的 PSP,因此经常低估没有 IDR 的潜在 PSP。并且,PS 不仅受 IDR 控制,还受结构化模块结构域以及不直接反映在氨基酸序列的其他相互作用影响。在最新的研究中,同济大学和中国科学院的研究团队开发了 PSPIre,一种机器学习预测器,它结合了残基级和结构级特征,用于精确预测 PSP。与当前的 PSP 预测因子相比,PSPire 在识别没有 IDR

AlphaFold 预测细菌生存所需的 1402 种蛋白互作,最完整的细菌必需相互作用图谱

革兰氏阴性必需相互作用组。(来源:eLife)编辑 | 紫罗细菌蛋白质组平均由约 4000-5000 个蛋白质组成,这意味着相互作用组可能多达 2000 万个相互作用。据估计,大肠杆菌中大约有 12,000 种物理相互作用。然而,并非所有这些相互作用都对细菌的生存至关重要。对生物体中蛋白质相互作用的研究,是理解生物过程和中心代谢途径的基础。然而,我们对细菌相互作用组的了解仍然有限。近日,西班牙巴塞罗那自治大学(Universitat Autònoma de Barcelona,UAB)的研究人员使用人工智能工具 A

清华&第四范式&腾讯研究团队:图神经网络与生物医学网络实现新兴药物相互作用预测

编辑 | 萝卜皮新兴药物的药物相互作用 (DDI) 为治疗和缓解疾病提供了可能性,利用计算方法准确预测这些相互作用可以改善患者护理并有助于高效的药物开发。然而,许多现有的计算方法需要大量已知的 DDI 信息,这对于新兴药物来说是稀缺的。清华大学、第四范式(4Paradigm)以及腾讯 Jarvis Lab 的研究人员提出了 EmerGNN,这是一种图神经网络,可以利用生物医学网络中的丰富信息来有效预测新兴药物的相互作用。EmerGNN 通过提取药物对之间的路径、将信息从一种药物传播到另一种药物以及在路径上结合相关的

以「钥匙和锁」方式设计分子,浙大&碳硅智慧开发3D分子生成新模型SurfGen

编辑 | 紫罗高效的从头设计是计算机辅助药物发现的巨大挑战。上个月,浙大侯廷军团队和碳硅智慧合作提出了一种基于蛋白口袋的三维(3D)分子生成模型——ResGen,ResGen 计算效率更高,比之前最好的技术快大约八倍。研究成果发表在《Nature Machine Intelligence》上。近日,该团队又在《Nature Computational Science》发表了其最新研究,提出用于基于结构的分子设计新模型——SurfGen。近年来,真实的结构特异性三维分子生成已经开始出现,但大多数方法将目标结构视为偏向
  • 1