线性

Diffusion Mamba:用线性计算打造高效高分辨率图像生成新范式

一眼概览Diffusion Mamba (DiM) 是一种结合状态空间模型(SSM)和扩散模型的新架构,旨在实现高效的高分辨率图像生成。 相比于基于 Transformer 的扩散模型,DiM 具有更优的计算效率,特别是在超高分辨率图像(1024×1024 及以上)生成任务中表现突出。 核心问题目前的扩散模型主要依赖U-Net或Vision Transformer(ViT)作为骨干架构。

如何从头开始编写LoRA代码,这有一份教程

作者表示:在各种有效的 LLM 微调方法中,LoRA 仍然是他的首选。LoRA(Low-Rank Adaptation)作为一种用于微调 LLM(大语言模型)的流行技术,最初由来自微软的研究人员在论文《 LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS 》中提出。不同于其他技术,LoRA 不是调整神经网络的所有参数,而是专注于更新一小部分低秩矩阵,从而大大减少了训练模型所需的计算量。由于 LoRA 的微调质量与全模型微调相当,很多人将这种方法称之为微调神器。自发布

经典教材《统计学习导论》第二版来了,新增深度学习等内容,免费下载

经典的《统计学习导论》又出第二版了,相比于第一版,新版增加了深度学习、生存分析、多重测试等内容,可免费下载。
  • 1