系统

欧洲议会通过《人工智能法案》:禁止人工智能操纵人类行为、利用人类弱点

感谢欧洲议会今日以 523 票赞成、46 票反对、49 票弃权的压倒性多数支持通过了《人工智能法案》,据悉,这项法案将会“具有里程碑意义”。欧洲议会表示,该法案旨在保护基本权利、环境可持续性等方面免受“高风险人工智能”的影响,同时促进创新,以将欧洲“打造成为该领域的领导者”。综合界面新闻、BBC 报道,该法案将禁止一部分“威胁公民权利”的人工智能应用,包括基于敏感特征的生物识别分类系统,以及从互联网或闭路电视录像中无目标地抓取面部图像,以创建面部识别数据库。此外,操纵人类行为或利用人类弱点的人工智能也将被禁止。该法

Nature子刊综述:储层计算未来的新机遇和挑战,华为联合复旦等发布

储层计算可能发挥重要作用的应用领域。编辑 | 紫罗尽管深度学习在处理信息方面取得了巨大成功,但其依赖于训练大型神经网络模型,限制了其在常见应用中的部署。因此,人们对开发能快速推理和快速适应的小型轻量级模型的需求日益增长。作为当前深度学习范式的替代方向,神经形态计算研究引起了人们的极大兴趣,其主要关注开发新型计算系统,这些系统的能耗只有当前基于晶体管的计算机的一小部分。在神经形态计算中,一个重要的模型家族是储层计算(RC),储层计算起源于 21 世纪初,它在过去的二十年中取得了重大进展。为了释放储层计算的全部功能,为

中国科大团队开发用于原子系统对外部场响应的通用机器学习模型

编辑 | 萝卜皮机器学习的原子间相互作用势使得封闭系统的高效、准确的分子模拟成为可能。然而,可以极大地改变化学结构或反应性的外部场,很少被包含在当前的机器学习模型中。中国科学技术大学的研究人员提出了一种通用场诱导递归嵌入原子神经网络(field-induced recursively embedded atom neural network,FIREANN)模型,该模型将伪场矢量依赖特征整合到原子描述符中,以表示具有严格旋转等变性的系统-场相互作用。这种「一体式」方法将偶极矩和极化率等各种响应特性与单个模型中的场相

对于化学家来说,人工智能革命尚未发生?

编辑 | 绿萝许多人担心 AI 已经走得太远,或者有走得太远的风险。拥有「AI 教父」之称的杰弗里·辛顿(Geoffrey Hinton)最近辞去了谷歌副总裁的职务,理由是希望不受约束地公开谈论 AI 对社会和人类福祉的潜在风险。但是,与这些大局的担忧相反,在许多科学领域,你会听到一种不同的沮丧情绪在悄悄地表达:AI 还没有走得足够远。其中一个领域是化学,机器学习工具有望在研究人员寻找和合成有用的新物质的方式上掀起一场革命。但大规模革命尚未发生——因为缺乏可用于「投喂」人工智能系统的数据。任何 AI 系统的好坏取决

无代码生产力工具赋能数字化供应链新发展

「机器之心2021-2022年度AI趋势大咖说」聚焦「驱动未来的AI技术」与「重塑产业的AI科技」,推出线上分享,共邀请近40位AI领域知名学者、产业专家及企业高管通过主题分享及多人圆桌等形式,与行业精英、读者、观众共同回顾 2021年中的重要技术和学术热点,盘点AI产业的年度研究方向以及重大科技突破,展望2022年度AI技术发展方向、AI技术与产业科技融合趋势。

模块化的机器学习系统就够了吗?Bengio师生告诉你答案

Bengio 等研究者刚「出炉」的预印本论文,探讨了机器学习系统的一个重要方向问题。

ICLR2022:清华、腾讯AI Lab共同提出等变图力学网络,实现多刚体物理系统模拟

清华 AIR、计算机系与腾讯 AI Lab 合作,共同提出等变图力学网络,实现了理论力学中的一类重要任务—多刚体系统模拟。

基于会话推荐系统最新长文综述,163篇参考文献,已被ACM Computing Surveys接收

基于会话的推荐系统,作为一种新兴的推荐系统范式,正方兴未艾,大量的新技术和新方法层出不穷。这篇综述给读者在关于这个领域的主要问题、关键挑战、最新进展以及主要方法和应用等方面提供了一个综合而全面的认知。